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Preface 

 

The International Symposium on Vibrations of Continuous Systems is a 
forum for leading researchers from across the globe to meet with their colleagues 
and present both old and new ideas in the field. Each participant has been 
encouraged to either present results of recent research or to reflect on some 
aspect of the vibration of continuous systems which is particularly interesting, 
unexpected or unusual. This type of presentation is meant to encourage 
participants to draw on understanding obtained through many years of research in 
the field. 
 

The 9th ISVCS takes place 22-26 July 2013 in Hotel Villa Novecento, in 
Courmayeur, Italy on the Italian side of Mont Blanc (Monte Bianco), the highest 
mountain in the Alps. It focuses on the vibrations of the fundamental structural 
elements such as strings, rods, beams, membranes, plates, shells and other solid 
bodies. Structures composed of assemblies of structural elements are also of 
interest, if such structures display interesting or unusual response. Typical days at 
the Symposium will consist of morning technical presentations, with afternoon 
hikes or excursions, and in the evening further technical discussions. The various 
outings and social gatherings provide important opportunities for relaxed and 
informal discussion of technical topics surrounded by the natural beauty of the 
European Alps. 
 

This volume of Proceedings contains 27 short summaries of the presentations 
to be made at the Symposium as well as short biographical sketches of the 
participants. 
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Free Vibrations of Beams accounting for Refined Theories and
Radial Basis Functions

E. Carrera1∗, A. J. M. Ferreira2, A. Pagani1, M. Petrolo1

1Department of Mechanical and Aerospace Engineering, Politecnico di Torino,

Corso Duca degli Abruzzi 24, 10129 Torino, Italy.

2 Department of Mechanical Engineering, Universidade do Porto,

Rua Dr Roberto Frias 4200-465, Porto, Portugal.

The free vibration response analysis of beams with arbitrary cross-sections and geometrical boundary conditions

consists of one of the most classical problem of dynamics of continuum systems. Depending on the beam length as

well as on the geometrical characteristics of the cross-section, classical beam theories neglecting (Euler-Bernoulli) and

accounting (Timoshenko) for transverse shear deformation can lead to inaccurate results, especially in those cases in which

vibration modes involving significant cross-section deformations are of interest. The use of refined theories, which are

able to accurately detect in-plane deformations and warping, is therefore mandatory in many practical problems related to

the high-frequency response analysis and thin-walled beams. In this work, one-dimensional refined theories are developed

on the basis of the Unified Formulation (UF), which was recently introduced by the authors [1].

Closed-form exact solutions of governing equations related to free vibration analysis are available only for a few cases of

boundary conditions. Therefore, to obtain the solutions for a wide range of problems, adequate approximated/numerical

methods have to be developed, see [2]. Numerical methods can be classified as meshless and mesh-based methods. Among

the latter, the finite element method (FEM) is probably the most popular. FEM, as well as any other method introducing

a finite discretization of the problem domain, reveals by definition deficiencies in the evaluation of the high-frequency

response, which plays a fundamental role in many practical problems such as wave propagation and vibro-acoustics. The

use of meshless methods is mandatory in these cases. Among the many available meshless methods, the radial basis

functions (RBF) method is considered in this work to investigate the free vibration characteristics of beams by accounting

for refined theories developed on the basis of UF. In the recent past, authors applied RBF and UF to plate and shell

problems and encouraging results were obtained [3]. A few details on the technique adopted are outlined below.

Beam governing equations based on UF. Within the framework of the UF, the displacement field of a N-order beam

theory can be expressed as

u(x, y, z; t) = Fτ (x, z)uτ (y; t), τ = 1, 2, ....,M (1)

where u is the displacement vector, xyz is a rectangular coordinate system with y lying along the beam axis, and Fτ are

the functions of the coordinates x and z on the cross-section plane of the beam, which is denoted as Ω. uτ is the vector

of the generalized displacements, M stands for the number of terms used in the expansion, and the repeated subscript, τ ,

∗Corresponding author: erasmo.carrera@polito.it
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indicates summation. The principle of virtual displacements is used to derive the equations of motion.

δLint + δLine = 0, with δLint =

∫
V

δεTσ dV (2)

where Lint stands for the strain energy and δLine is the work done by the inertial loadings. δ stands for the usual virtual

variation operator and V is the volume of the beam. ε and σ are the strain and stress vectors respectively. The virtual

variation of the strain energy is rewritten using strain - displacement relations, constitutive laws, and Eq. (1). After

integrations by part, Eq. (2) becomes

δLint =

∫
L

δuT
τ K

τsus dy +
[
δuT

τ Π
τsus

]y=L

y=0

(3)

where K
τs is the differential linear stiffness matrix and Π

τs is the matrix of the natural boundary conditions in the form

of 3 × 3 fundamental nuclei. The virtual variation of the inertial work is given by δLine =

∫
V

δuρü dV . The explicit

form of the governing equations was obtained in a recent work [4]. In the following, the component along the x-axis of

the equations of motion of the refined beam in free vibration is reported

δuxτ : −E66
τsuxs,yy +

(
E26

τ,xs
− E26

τs,x

)
uxs,y +

(
E22

τ,xs,x
+ E44

τ,zs,z

)
uxs

−E36
τsuys,yy +

(
E23

τ,xs
− E66

τs,x

)
uys,y +

(
E26

τ,xs,x
+ E45

τ,zs,z

)
uys

+
(
E45

τ,zs
− E16

τs,z

)
uzs,y +

(
E44

τ,zs,x
+ E12

τ,xs,z

)
uzs = −Eρ

τsüxs

(4)

where the generic term Eαβ
τ,θs,ζ

=

∫
Ω

C̃αβFτ,θFs,ζ dΩ is a cross-sectional moment parameter. Double over dots stand

as second derivative with respect to time (t). Letting Pτ =
{

Pxτ Pyτ Pzτ

}T
to be the vector of the generalized

forces, the component along the x-axis of natural boundary conditions is

δuxτ : Pxs = E66
τsuxs,y + E26

τs,x
uxs + E36

τsuys,y + E66
τs,x

uys + E16
τs,z

uzs (5)

The complete form of governing equations and natural boundary conditions, as well as the components of the fundamental

nuclei can be found in [4].

Radial basis functions for one-dimensional refined theories. The solution is assumed to be harmonic, uτ (y; t) =

Uτ (y)e
iωt. The radial basis function (φ) approximation of the generalised displacement field can be defined as

Uτ (y) =

Nc∑
i=1

αiφ(‖y − yi‖2), 0 ≤ y ≤ L (6)

where yi, i = 1, ..., Nc is a finite set of distinct points (centers) on the beam axis whose length is referred to as L. The

coefficients αi are chosen so that uτ satisfies some variationally-consistent boundary conditions. Some examples of RBFs

are given below

φ(r) = r3, cubic

φ(r) = e−cr2, Gaussian

φ(r) =
√
c2 + r2, multiquadrics

(7)

By substituting Eq. (6) into the governing equations and by appliying the boundary conditions at the collocations points

that lie at the beam ends, the following eigenproblem can be formulated

[L − ω2G]X = 0 (8)

with L collecting stiffness terms and G collecting inertial terms. In Eq. (8), X are the modal shapes associated with the

natural frequencies which are referred to as ω.
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Preliminary results Several results concerning free vibration analysis of beam-like structures, obtained through the

combination of UF and FEM, are available in the literature. Among those examples, the free vibration characteristics

of a thin-walled cylinder are described in this section. As shown in [1], lower-order beam models are able to detect

’global’ modes such as bending and torsional ones. However, it was shown that higher-order beam theories are necessary

when local shell-like modes involving the presence of lobes along the circumferential direction of the cylinder have to be

characterized. Figures 1a and 1b show a two- and three-lobe mode of the cylinder, respectively. The frequency values of

the first three-lobe mode are given in Table 1 for both classical and refined beam theories and the results are compared

to shell and solid FEM solutions. In Table 1, N is the expansion-order of the refined beam model. More insight on the

capability of the present higher-order beam models of dealing with shell- and solid-like solutions will be given during the

presentation.

(a) Two lobes. (b) Three lobes.

Figure 1: Circumferential natural modes, 2D view, [1].

Theory DOFs f [Hz]

Euler-Bernoulli 93 −

Timoshenko 155 −

N = 2 558 −

N = 4 1395 75.690

N = 6 2604 52.386

N = 8 4185 40.102

Shell 49500 40.427

Solid 174000 46.444

Table 1: First three-lobe frequency [1].

The use of RBF method as opposed to FEM, in conjunction with UF, represents a powerful tool for the high-frequency

response analysis of both solid and thin-walled structures and the results will be disclosed during the 9th International

Symposium on Vibrations of Continuous Systems.
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Steady-State Response of Forced Cantilever with Tip Magnets 
 

Li-Qun Chen1,2,3, Guo-Ce Zhang2 and Hu Ding2

1 Department of Mechanics, Shanghai University, Shanghai 200444, China. 
2 Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China. 

3 Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai 200072, China. 

Vibration-based energy harvesting is a novel technique for powering wireless sensors [1-5]. In many cases, it is 

necessary to attach a proof mass to the tip of the cantilever in order to improve its dynamic flexibility. The magnetic 

force technique [6-10] could be used to produce nonlinearity or alter the overall stiffness of the energy harvesting device. 

In this paper, a vibration energy harvester will be designed and modeled as a continuous mechanical system [9, 10].

Mainly based on Challa’s model [8], a straight cantilever was intended to employ on the host structure of the 

piezoelectric energy harvester. In addition to a variable proof mass, two permanent magnets are used: one magnet is 

connected to the free end of the uniform cantilever, while the other magnet is fixed to the enclosure of the device at the 

bottom, vertically aligned with the magnet on the beam. As a tunable harvesting device, the distance between two 

magnets can be controlled to alter the magnetic force.  

The present investigation predicts the relative motion of a cantilever with a tip-mass and magnets. The Kelvin 

viscoelastic model is used to account for the damping in the cantilever. The magnetic force at the tip will be modeled as 

a fractional function with respect to magnetic spacing in the nonlinear boundary condition. Under the sinusoidal base 

excitation, both the method of multiple scales and the finite difference method are employed to determine the steady-

state response of forced vibration. In the primary resonance without internal resonance, it is analytically demonstrated 

that the modes uninvolved in the resonance actually have no effects on the steady-state response. The results show the 

switch from the hardening-type behavior to the softening-type versus the augmenting magnetic force. The results can be 

potentially employed to enhance the amplitude of the steady-state response and broaden the frequency bandwidth of 

vibration-based energy harvesters. 

Fig. 1 Layout of cantilevered piezoelectric energy harvester with tip magnets 

It is assumed that the applying cantilever is a rectangular Euler–Bernoulli beam. The base excitation is assumed to 

be a sinusoidal translation to simplify the problem. b and � are the amplitude and the frequency of the external 

transverse load subjected to the beam, respectively. The dimensionless equation of relative motion can be obtained as 

� � � � � � � � � �
� � � � � � � � � �� �

2

0 e e

, , , sin ; 0, 0; , 0, 0; , 1, , 1, 0;

, 1, , 1, , 1, , 1, + 1, 3

tt xxxx xxxxt x xx xxt

xxx xxxt xxxx xxxxt

z z z b t z t z t z t z t

z t z t z t z t F d A z t A

� � � �

� � � 0

� � � � � � �

� � 	 � 
 � � �� 
 �

2l �

                               (1) 

where a comma preceding x or t denotes the partial differentiation with respect to spatial or time coordinate, and  

� � � � � �22

m 2 2F d C d d dl ��	 
� � � � �� 
                                                             (2) 

Cm is coefficient of magnetic force, Ae represents the static displacement z(1,0) computed from F(d0+Ae)=3Ae, � is the 

ratio of the tip mass to the beam mass, � is the viscoelastic coefficient, and d0 is the distance separating two magnets. 

Three time scales with a bookkeeping device � was introduced, T0=t, T1=�t, T2=�2t. A detuning parameter � is also 

introduced to quantitatively the deviation of exciting frequency to the nth natural frequency by �=�n+�2�. A second-

order uniform approximation is sought in the form of 
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� � � � � � � � � �2 3

0 0 2 1 0 2 2 0 2, ; , , , , , ,z x t Z x T T Z x T T Z x T T O 4� � � �� � � � �                                           (3) 

Substituting replacements ���2� and b��3b into the governing equation and equating the coefficients of like 

powers in � will yield first three equations. In order to study the effect of adjacent modes on the nth primary resonance, 

the solution to the first-order equation is supposed to have relations with the mth mode and can be expressed as 

� � � � � � � � � �0i

0 0 2 2 2, , e enT
n n m m

0i mTZ x T T x Y T x Y T cc�� � �� � �                                                (4) 

where cc represents the complex conjugate of all preceding terms on the right-hand side of an equation, and the 

frequencies can be obtained from the following equation. 

� �� � � �2 3

1 cos sinh sin cosh + 1+cos cosh =0k kk k k k k kF� � � � � � � �� � �                            (5) 

The solution to the second-order equation can be written as 

� � � � � � � �0 00 0
i i2i 2i

2 3
2 2

1 0 2 2 2 2

1

, , e e
3

e2
6 2

en m m nn m T TT T
n n m m n m nm n m mn nm

x x F F F n mZ x T T Y Y Y Y Y Y Y Y Y Y cc
F

� � � �� �� � � �� � ��� 	 
	� 
 �� 
 �� � � 
� �
�

      (6) 

where the second-order modal functions can be computed easily. 

In order to further deduce solvability conditions, the solution to the third-order equation without internal resonance 

is considered to be in the form of 

                                                (7) � � � � � �0 0i i

2 0 2 2 2 2 2, , , e , e NSTn mT T
n mZ x T T Z x T Z x T cc� �� � � �

where NST is the abbreviation for non-secular terms that will not cause an unbounded solution. Substituting Eq. (7) into 

the third-order equation, multiplying the resulting equation by the corresponding modal function, and integrating the 

equation with respect to x over the interval [0, 1] will yield the solvability conditions. Combining with the boundary 

conditions, the repeated application of integration by parts to the resulting solvability condition will yield 

� � � �2i2 2 21
i i i e i i0; 0

2

T
n n n n n n nm n m m n m m m m m m nm n n mn ma Y Y Y Y Y Y Y Y Yb Y Y Y Yb Y��� � � � � � �� ��� � �� � � � �� � � �

�

                    (8) 

where the dot denotes derivation with respect to T2, and the new variables are all real. 

Substituting the solution to solvability condition in the polar form of  into the 

solvability condition (8b) and then separating real and imaginary parts will yield 

� � � � � � �2i

2 2=0.5 e = ,k T
k kY T a T k m n�

m m m ma a� ��� �� . For a steady-state 

motion, the response amplitude from the mth mode will decay exponentially within a finite time horizon and it has little 

effect on the steady-state response close to the nth mode. For a steady-state motion near the nth mode, both amplitude 

and phase can be considered to be constant so that an is the solution of the following frequency-response equation. 

� � � �2
4 2 232

+0.25n n n n n n na a a b�� � �� � ���                                                          (9) 

So far, the second-order approximation to the deflection at the free end of the cantilever is expressed as 

� � � � � � � �2 2

1

21

2 6
1, cos 1 cos

2
2n n n n nz t a t aF

F
t� � � � � � �

	 

� � � � ��

� �
���


                                   (10) 

Then �an is the approximate amplitude An of the steady-state response at the free end of the cantilever. Due to Lyapunov 

stability theory and Routh-Hurwitz criterion, the steady-state response is stable if the following condition is satisfied.  

� � � �� �2 24 4 4 3n n n n n n na a�� �� � �� � 2 0� � � �                                                (11) 

Considered dimensionless parameters are given as Cm=0.5084, l=0.004167, �=0.001, b=0.0001, d0=0.15, and 

�=0.02. Fig. 2 shows the comparison on the steady-state response between the multi-scale method and the finite 

difference method. The theoretical analysis exhibits very good qualitative agreement with the numerical simulations. 

For larger amplitude, it is obvious that upward frequency sweeps are preferable to downward sweeps in the hard spring. 

4.00 4.05 4.10 4.15
0.00

0.02

0.04
Down-sweep
Analytical
Up-sweep

A1

� 20.4 20.8 21.2 21.6 22.0 22.4
0.000

0.002

0.004
Analytical
NumericalA2

�
 (a) the first resonance              (b) the second resonance 

Fig. 2 The analytical steady-state responses with numerical validation 

The effects of the varying ratio on the frequency-response curve are illustrated in Fig. 3 with d0=0.15. It is clear 

that the peak values for different tip masses are considerably different. Erturk and Inman presented an experiment to 
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obtain the response functions without magnets [10]. They also found that both the tip motion and the power output are 

strongly attenuated at the higher vibration modes by increasing tip mass.  

-0.06 0.00 0.06 0.12 0.18
0.00
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0.08
�=0.02
�=0.1
�=0.2
�=0.5

�a1

��� -2 -1 0 1 2
0.000

0.002

0.004
�=0.02
�=0.1
�=0.2
�=0.5

�a2

���
 (a) the first resonance          (b) the second resonance 

Fig. 3 Effects of the tip mass on the frequency-response curve 

For the second resonance, the separation distance between two permanent magnets almost has no effect on the 

response curves. For the first resonance, the peak value increases versus descending distance between two magnets as 

shown in Fig. 4 (a). From Fig. 4(b), evolution of jumping phenomena is a result of significant interest. Fig. 4(b) shows 

the displacement frequency response curves for a certain range of the magnetic spacing. The extended range of large 

amplitude responses is provided by engaging the nonlinearity of the magnetic interactions. The biggish magnetic force 

results in the softening stiffness effect, which is the opposite of the hardening stiffness effect obtained for the lesser 

magnetic force. For a sinusoidal excitation, the hardening-type springs increase the bandwidth for frequency up-sweeps 

whereas the softening-type springs enhance the bandwidth for frequency down-sweeps.  

-0.1 0.0 0.1 0.2
0.00

0.04

0.08
d0=0.15 d0=0.2
d0=0.25 d0=1.0�a1

��� -0.2 -0.1 0.0 0.1 0.2
0.00

0.04

0.08
d0=0.08d0=0.06d0=0.05

d0=0.04 d0=0.1

�a1

���
 (a) for large spacing              (b) for small spacing 

Fig. 4 Effects of magnetic spacing on the first resonance curve 

        It is illustrated that the possibility of improving the effectiveness of energy harvesting via magnetic interactions. 

The investigation yields the following main conclusions. (1) The attachment of a tip permanent magnet can switch the 

frequency response curves between the hardening-type and the softening-type by adjusting the distance from the 

permanent magnet on the base, which potentially makes for the possible application of nonlinear vibration-based 

harvesters in micro-electromechanical systems. (2) The tip mass increases the response amplitude in the first mode and 

decreases the response amplitude in the higher order modes. (3) Any mode uninvolved in the resonance has no effect on 

the steady-state response of the tip-massed cantilever with the magnetic interaction in the primary resonance without 

internal resonances. 
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SOME ADVANCES IN THE DEFINITION OF EXACT AND DISTORTED SIMILITUDES

S. De Rosa and F. Franco

PASTA-Lab
Department of Industrial Engineering - Aerospace Section

Universita’ degli Studi di Napoli ”Federico II”
Via Claudio 21, 80125, Napoli - Italy

sergio.derosa@unina.it, francesco.franco@unina.it

One of the most intriguing points of the engineering applications is the definition of prototypes
(parent or similitude models) which are able, in some extent, to reproduce the response of a full-
scale model. This concerns the computational field and even experimental activities but for these
latter they are particularly desired. In fact the assembly of similitude models has always represented
a fundamental step for a deep understanding of given phenomena at different scales; aeroelastic
instabilities are one of the best examples. A well-known general view of the problems of similitudes
and analogies are in the text by Szucs, [1].

The present goal is thus to get a general procedure for defining exact and distorted similitudes in
order to build prototype models for linear structural and structural-acoustic responses. Previous
experiences have been reported for simplified thin plates and shells, [2], [3]: the actual step is to
discuss some advances for a thin stiffened cylinder. The complete procedure is named SAMSARA,
Similitude and Asymptotic Models for Structural-Acoustic Research and Application.

The procedure is based on the Energy Distribution Approach (EDA), [4] which allows the exact
derivation of input power and energy content in each of the subsystems. All the energy parameters
are expressed in terms of modal coordinates and EDA allows the definition of the main similitude
laws: these are derived by imposing that the responses in the original and parent models are the
same. EDA computes the distribution of energy in each subsystem; thus, the whole system can be
thought as an assembly of NS subsystems in which NM modes are resonating at each excitation
frequency. The energy influence coefficient matrix:

AEIC
rq (ω) =

∑
j

∑
k Γjk (ω)ψ

(q)
jk ψ

(r)
jk∑

j ηjωjΓjj (ω)ψ
(q)
jj

with
r, q ∈ {1, . . . NS}
j, k ∈ {1, . . . NM} ;

(1)

the spatial coupling parameter for the generic rth subsystem is the following:

ψ
(r)
jk =

∫
x∈r

ρ(x)φj(x)φk(x)dx; (2)

the frequency dependent members are here recalled:

Γjk (Ω) =
1

Ω

∫
ω∈Ω

ω2Re

[
1

ω2

j − ω2 + iu ηjω2

j

1

ω2

k − ω2 + iu ηkω2

k

]
dω; (3)

the term Ω represents a generic frequency interval in which the system response is analysed for a
given excitation; iu is the imaginary unit; φj is the jth global mode; ωj is the jth circular natural
frequency; ηj is the modal damping loss factor; ρ is a density function; x is the vector of the coor-
dinate. The analysis of the cross terms is rather complicated and two further approximations can

be used that allow separating the cross terms in large and small terms: Γ
(large)
jk (Ω) and Γ

(small)
jk (Ω),

[4]. The original damping values are such that the system response can be obtained using the real
eigensolutions: more complicated models based on the complex mode shapes do not add further
contributions to the present developments but remain to be investigated.

Some choices are required to restrict the field of investigation: it is assumed to not change the
material properties and the boundary conditions. Thus the sizes of the model and the damping can
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be reduced. As a consequence any similitude model can be well represented by the variations of
the damping and natural frequencies. It can be shown that the necessary condition for getting an
exact similitude is that the damping ratio is kept: rη = η̄j/ηj = 1, (the overbar denotes the items in
similitude). Being rω = ω̄j/ωj the given similitude ratio for the natural frequencies, one gets :

Γ̄jj =
1

r2ω
Γjj; Γ̄

(large)
jk =

1

r2ω
Γ
(large)
jk ; Γ̄

(small)
jk =

1

r2ω
Γ
(small)
jk (4)

To proceed with the thin stiffened cylinder, the reference analytical model is well-known, [5]. The
field of investigation is restricted to the analysis of the values of radius, R, thickness, h, lenght, L;
the longitudinal and circumferential stiffeners are left unaltered in these simulations. Thus, these
are the similitude parameters: αα = L̄/L, ββ = R̄/R, γγ = h̄/h:

replica exact similitude αα = ββ = γγ
avatar distorted similitude αα �= ββ, ββ �= γγ,αα �= γγ

It has to be noted that the rω in the cylinder can assume different laws depending on the nature of
the involved modes: in the avatars it is a frequency dependent function.

Two simple results are shown in Figures 1 and 2 for an aluminium cylinder (NCL and NCR are
the number of longitudinal and circumferential stiffeners, and NMX and NMY are the number of
assumed modes). In both the figures, the distribution of natural frequencies is reported together with
a forced response. This last is a radial component of the structural velocity as result of a mechanical
point excitation. The knowledge of rω allows defining the remodulation of the frequency axis, so
that the original model and the avatar (or replica) can be directly compared, by remodulating the
response axis too.
The replica, Fig. 1, perfectly replicates the original response even using a reduction of thickness,
length and radius: αα = ββ = γγ = 0.5. The avatar is a very good approximation too, Fig. 2,
αα = ββ = 0.2; γγ = 0.5.

The analyses here summarised are at their preliminary stages ; here it has been also assumed to keep
the original stiffeners. Nevertheless, the promising results allow thinking that the goal of having
useful avatars can be pursued even if only an experimental campaign will give more information
about the real possibilities.
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Italy, ISBN:9788890648403, no.48

[4] B. R. Mace. Statistical energy analysis, energy distribution models and system modes. Journal
of Sound and Vibration, 264, 391-409, 2003.

[5] Martin M. Mikulas, Jr., and John A. McElman. On free vibrations of eccentrically stiffened
cylindrical shells and flat plates. NASA TN D-3010, 1967
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Figure 1. Exact similitude: replica natural frequencies and response

Figure 2. Distorted similitude: avatar natural frequencies and response
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Transmission and Reflection of Mechanical Waves at an Interface
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We are concerned with two dissimilar prismatic bars joined at an interface whose unit
normal lies parallel to the axes of these members. Each bar may have its own cross-sectional
shape and its own general (anisotropic) properties. Locate the origin of coordinates some-
where within this interface. In the prismatic member occupying the positive portion of the
z-axis, assume a steady-state mechanical wave of frequency ω is traveling in the negative
z-direction. When this signal impinges upon the interface between the two bars, systems
of transmitted and reflected waves are generated, the nature of which depends upon ω and
all of the geometrical and mechanical properties of both members. Herein, a method of
analysis for characterizing the nature of the transmitted and reflective wave fields on a
three-dimensional basis is presented.

z

x

y

The spectral data characterizing the reflected and transmitted waves are obtained
from semi-analytical finite element models of the two beams. In this method, the behavior
dependent on the cross-sectional coordinates is represented by interpolation polynomials
and that along the beam’s axis z and time t is kept analytical. For each beam, a system
of partial differential equations of the following form in z and t is obtained.

K1U,zz − K2U,z − K3U + MÜ = 0 (1)

Spectral decomposition of Eq. (1) using solution form U(z, t) = Uoei(kz−ωt) of both
members gives the data used to synthesize the behavior of the reflected and transmitted
waves. For each member, the spectral decomposition takes the form of a complex quadratic
algebraic eigenproblem where k acts as the eigenvalue parameter.

k2Uo + ikK−1
1 K2U0 + K−1

1

(
K3 − ω2M

)
U0 = 0 (2)
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By introducing U1 = kU0 into algebraic eigensystem (2), it is possible to reduce the
algebraic eigenproblem to 1st order canonical form.[ · I

−K−1
1

(
K3 − ω2M

) −iK−1
1 K2

]{
Uo

U1

}
= k

{
Uo

U1

}
(2)

Real eigendata extracted from Eq. (2) are associated with propagating modes, while
complex eigenvalues describe end modes. A complex conjugate pair, kR ± ikI , describe
standing vibrations with amplitudes regressing from the free end of a semi-infinitely long
cylinder exponentially into its interior, one toward the positive z-direction and the other
in the opposite direction. Purely imaginary eigenvalues describe monotonic exponential
decay, while complex eigenvalues represent sinusoidal decay. For each eigenvalue km, there
are right-handed and left-handed eigenvectors, φm and ψm, respectively, that satisfy Eq.
(2) and its adjoint. Moreover, the eigenvectors satisfy the bi-orthogonality relations

ΨT Φ = diag(Bn) ; ΨTAΦ = diag(Bn i kn) (3)

Analysis Procedure
We are concerned with steady-state behavior and more pertinently, the reflection-

transmission phenomenon at the interface z = 0. Thus, the axial and time dependence,
given by e−i(kz−ωt), for z = 0, reduces to e−iωt. Since this factor occurs throughout, it
may be suppressed without confusion.

Let UINC and SINC denote the nodal displacements and cross-sectional surface trac-
tions at the Guassian integration points of the incoming wave, which at the interface z = 0
have the form

UINC = AINCU0 ; SINC = AINCS0 (4)

If this bar contains a region not continuous with the transmitted portion of the system of
bars, then the incident wave displacement and traction components must be subdivided
into two portions,

UINC = AINCU1
0 + AINCU2

0 ; SINC = AINCS1
0 + AINCS2

0 (5)

where superscripts 1 and 2 denote the continuous portion and traction-free portion, re-
spectively.

Let subscripts m and n be indices identifying the modes comprising the reflected and
transmitted wave forms. Thus, the reflected and transmitted waves, which travel in the
positive adn negative z-directions, respectively, at z = 0 can be stated as

Uref =
N∑

m=1

aref−m φm ; Sref =
N∑

m=1

aref−m sm (6)
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Utr =
N∑

n=1

btr−n φn ; Str =
N∑

n=1

btr−n sn (7)

Similarly, if a portion of a given bar is not continuous with its counterpart on either side
of the inteface, then its displacement and traction components appear as

Uref =
N∑

m=1

aref−m φ1
m +

N∑
m=1

aref−m φ2
m ; Sref =

N∑
m=1

aref−m s2m+
N∑

m=1

aref−m s2m (8)

or

Utr =
N∑

n=1

btr−n φ1
n +

N∑
n=1

btr−n φ2
n ; Str =

N∑
n=1

btr−n s1n +
N∑

n=1

btr−n s2n (9)

where the superscripts 1 and 2 denote the continuous portion and traction-free portion,
respectively.

Suppose the incident portion of the system contains a portion on the interface that is
traction-free, then Eqs. (5),(7), and (8) are applicable. Enforcing interface continuity of
displacement and surface traction as well as traction-free conditions on the exposed (free)
portion of the cross-section yield the following set of matrix equations⎡

⎢⎢⎣
Φ1

m −Φn

S1
m Sn

S2
m ·

⎤
⎥⎥⎦
{

Aref

Btr

}
= −AINC

⎧⎪⎪⎨
⎪⎪⎩

U1
0

S1
0

S2
0

⎫⎪⎪⎬
⎪⎪⎭

→ P1V = −AINCF1 (10)

If, on the other hand, the transmitted portion contains a portion of the interface that is
traction-free, then Eqs. (4), (6) and (9) apply, which result in⎡

⎢⎢⎣
Φm −Φ1

n

Sm S1
n

· S2
n

⎤
⎥⎥⎦
{

Aref

Btr

}
= −AINC

⎧⎪⎪⎨
⎪⎪⎩

U0

S0

0

⎫⎪⎪⎬
⎪⎪⎭

→ P2V = −AINCF2 (11)

The solution for V = [Aref Btr]T in Eq. (10) or (11), which are the coefficients
of the reflected and transmitted modes, can be obtained on a least-squares basis by pre-
multiplying each equation by its hermitian transpose, i.e., by P H

1 or P H
2 , respectively, and

then by inversion.

V = −AINC

[
P H

i Pi

]−1[
P H

i Fi

]
(i = 1, 2) (12)

Some interesting cases will be presented at the Symposium.
References
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Levy-type vibration solutions of cross-ply laminated

plates based on refined variable-kinematic theories
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Introduction. Exact solutions for free vibration of structural elements can serve as a quick tool
for understanding the dynamic response, a reference for verification of computational methods or a
basis for development of advanced modelling techniques such as the dynamic stiffness method. It is
well known that analytical solutions can be developed for rectangular laminated plates with certain
lamination schemes and boundary conditions. In particular, the Levy method can be adopted when
one pair of opposite edges are simply supported and the remaining two edges having any possible
combination of free, simple support or fixed conditions. However, the mathematical effort needed
to derive the exact solutions can be considerable, especially when the plate is modelled according
to higher-order equivalent single-layer (ESL) or layer wise (LW) kinematic theories. Furthermore,
the solving equations must be re-derived when the plate theory has changed. The novel procedure
introduced here overcomes the above shortcomings. It can be considered as an application to the Levy
method of the unified formulation developed by Carrera [1]. Using the present approach, Levy-type
vibration solutions based on refined variable-kinematic theories can be obtained for laminated plates
in an efficient and automatic way.

Preliminaries. Consider a cross-ply laminated rectangular plate of length a, width b and thickness
h. The plate consists of N� layers, which are assumed to be homogeneous and made of orthotropic
material of mass density ρk. The k-th layer has thickness hk and is located between interfaces z = zk
and z = zk+1 in the thickness direction. The constitutive equations of a generic layer k are written as
σ
k
p = C̃k

ppε
k
p + C̃k

pnε
k
n and σ

k
n = C̃k

npε
k
p + C̃k

nnε
k
n, where σ and ε are the stresses and strains, split into

in-plane (p) and out-of-plane (n) components, and matrices C̃ contain the elastic coefficients in the
plate reference system. Refined 2-D kinematic theories are employed by expressing the displacement
vector for the k-th lamina through an indicial notation over τ as follows:

uk(x, y, ζk, t) = Fτ (ζk)u
k
τ (x, y, t) (1)

where uk
τ =

{
ukτ vkτ wk

τ

}
is the vector of kinematic variables, τ = t, r, b, r = 2, . . . , N − 1, ζk is

the local dimensionless layer coordinate (−1 ≤ ζk ≤ 1), N is the order of the theory, and Fτ (ζk) are
assumed thickness functions. In case of LW theories, they are taken as a combination of Legendre
polynomials in order to satisfy the interlaminar continuity of the displacements. If an ESL theory is
adopted, global thickness functions Fτ (z) are assumed as terms of a Taylor z expansion. Note that in
Eq. (1) the summation convention for repeated indices is implied. Using Eq. (1), strains are linearly
related to displacements as εkp = FτDpu

k
τ and ε

k
n = FτDnu

k
τ + Fτzu

k
τ , where Dp and Dn are matrices

of differential operators and Fτz = dFτ/dz.

Governing equations at layer level. Substituting the constitutive equations and the strain-
displacement relations into the principle of virtual displacements, integrating by parts and imposing
the definition of virtual variations for the unknown displacements yield the following set of equations
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of motion over the plate domain Ω = [0, a] × [0, b] for the k-th layer

Lkτsuk
s = ρkJk

τsü
k
s (τ, s = t, r, b) (2)

where Lkτs is a 3× 3 nucleus matrix of differential operators given by

Lkτs = DT

p C̃
k
ppJ

k
τsDp +DT

p C̃
k
pnJ

k
τsDn +DT

p C̃
k
pnJ

k
τsz

+DT

n
C̃k

np
Jk
τsDp +DT

n
C̃k

nn
Jk
τsDn +DT

n
C̃k

nn
Jk
τsz

− C̃k
npJ

k
τzsDp − C̃k

nnJ
k
τzsDn − C̃k

nnJ
k
τzsz

(3)

and Jk
τs =

zk+1∫
zk

FτFsdz, J
k
τsz =

zk+1∫
zk

FτFszdz, J
k
τzs =

zk+1∫
zk

FτzFsdz, and Jk
τzsz =

zk+1∫
zk

FτzFszdz. Accordingly,

the boundary conditions along the plate boundary Γ can be compactly expressed as

Bkτsuk
s = 0 (τ, s = t, r, b) (4)

where the 3× 3 boundary-related nucleus matrix Bkτs is given by

Bkτs = I (geometrical)

Bkτs = NT

p
C̃k

pp
Jk
τsDp +NT

p
C̃k

pn
Jk
τsDn +NT

p
C̃k

pn
Jk
τsz

+NT

n C̃
k
npJ

k
τsDp +NT

n C̃
k
nnJ

k
τsDn +NT

n C̃
k
nnJ

k
τsz (natural)

(5)

and N p and N n are matrices containing the components nx and ny of the outward normal.

The solution procedure. A Levy-type solution satisfying the simply-supported boundary conditions
at edges y = 0, b is sought as follows

uk
s =

⎧⎨
⎩

Uk
sm(x) sin (βmy)

V k
sm(x) cos (βmy)

W k
sm(x) sin (βmy)

⎫⎬
⎭ ejωmt (6)

where ωm denotes the unknown eigenfrequency associated with the m-th eigenmode and βm = mπ/b.
Substituting of solution (6) into Eqs. (2) yields, for each m = 1, 2, . . . , the following system of ordinary
differential equations for the k-th layer

Lkτs
2

d2Uk
s

dx2
− Lkτs

1

dUk
s

dx
− Lkτs

0
Uk

s = 0 (τ, s = t, r, b) (7)

where Uk
s(x) =

{
Uk
sm(x) V k

sm(x) W k
sm(x)

}T
and

Lkτs
0 =

⎡
⎣ l11 0 0

0 l22 l23
0 l23 l33

⎤
⎦

l11 = β2
mC̃k

66
Jk
τs + C̃k

55
Jk
τzsz − ρkJk

τsω
2
m

l22 = β2

mC̃k
22
Jk
τs + C̃k

44
Jk
τzsz

− ρkJk
τsω

2

m

l33 = β2
mC̃k

44
Jk
τs + C̃k

33
Jk
τzsz − ρkJk

τsω
2
m

l23 = βm(C̃k
44
Jk
τzs

− C̃k
23
Jk
τsz

)

Lkτs
1

=

⎡
⎣ 0 l12 l13

−l12 0 0
−l13 0 0

⎤
⎦ l12 = βm(C̃k

12
+ C̃k

66
)Jk

τs

l13 = C̃k
55
Jk
τzs

− C̃k
13
Jk
τsz

Lkτs
2

= Jk
τs

⎡
⎣ C̃k

11
0 0

0 C̃k
66

0

0 0 C̃k
55

⎤
⎦

Note that Lkτs
0

= Lkτs
0

(ωm). By varying the theory-related indices τ and s over the defined ranges,
the 3 × 3 nuclei Lkτs

i (i = 0, 1, 2) are expanded so that a new system of equations can be obtained as
follows

Lk
2

d2Uk

dx2
− Lk

1

dUk

dx
− Lk

0
Uk = 0 (8)
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where

Lk
i =

⎡
⎣ Lktt

i Lktr
i Lktb

i

Lkrt
i Lkrr

i Lkrb
i

Lkbt
i Lkbr

i Lkbb
i

⎤
⎦ (i = 0, 1, 2)

(r = 2, . . . , N)
Uk(x) =

⎧⎨
⎩

Uk
t (x)

Uk
r (x)

Uk
b (x)

⎫⎬
⎭ (9)

The final set of equations for the multilayer plate is written as

L2

d2U

dx2
− L1

dU

dx
− L0U = 0 (in Ω) (10)

where U(x) is the vector containing all the independent kinematic variables Uk(x) (k = 1, . . . , N�),
and the resulting matrices Li are simply summed layer-by-layer in case of ESL theories or assembled
by enforcing the interlaminar continuity condition in case of LW theories. A similar expansion and
assembly procedure is applied to obtain the system of boundary conditions at edges x = 0, a

B1

dU

dx
+B0U = 0 (x = 0, a) (11)

starting from the boundary-related nuclei Bkτs
i (i = 0, 1). For example, when one edge is assumed to

be free, the corresponding nuclei are given by

Bkτs
1 = Jk

τs

⎡
⎣ C̃k

11
0 0

0 C̃k
66

0

0 0 C̃k
55

⎤
⎦ Bkτs

0 =

⎡
⎣ 0 −βmC̃k

12
Jk
τs C̃k

13
Jk
τsz

βmC̃k
66
Jk
τs 0 0

C̃k
55
Jk
τsz

0 0

⎤
⎦ (12)

A state space approach is used to solve the free vibration problem by converting Eqs. (10) and (11)
into a first-order form as follows

dZ

dx
= AZ A =

[
L2 0

0 I

]
−1 [

L1 L0

I 0

]
Z(x) =

{
dU/dx

U

}

BZ = 0 (x = 0, a) B =
[
B1 B0

]

A general solution can be expressed as

Z(x) = eAxc = VDiag
(
eλix

)
V−1c = Hc (13)

where c is a vector of constants connected to boundary conditions, V is the matrix of eigenvectors of
A and λi are the corresponding eigenvalues. Replacement of solution (13) into the system of boundary
equations yield a homogeneous system

BHc = Kc = 0 (x = 0, a) (14)

The natural frequencies associated with the m-th mode and the assumed boundary conditions at edges
x = 0, a are determined by setting |K| = 0. Note that, since K = K(ωm), an iterative numerical
procedure has been employed to derive the frequency parameters.

Numerical results. Considerably different vibration results have been obtained for cross-ply plates
of various thickness-to-length ratios, degree of orthotropy and boundary conditions at edges x = 0, a.
Comparisons with other exact solutions and appropriate conclusions concerning the accuracy of various
theories will be presented at the symposium.
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The vibration analysis of plates is a widely researched area. A complete assembly of the subject 

was compiled by Leissa in 1973[1]. Since, hundreds of papers were published on the topic. The 

problem can be divided into two groups: the first group includes cases for which an analytical 

solution is known (Navier and Levy solutions). These are cases with at least two opposite edges 

simply supported. The second group includes cases with clamped edges, free edges, and simply 

supported edges not included in the first group. For the second group semi analytical and 

numerical solutions are in use. Benchmark solutions for the cases in the second group are highly 

desired for comparison of existing and future methods.  

In this work a new method is presented for the analysis of clamped plates. The solutions for the 

natural frequencies of the plates are found using static analysis. Starting from the equations of 

motion of a thin isotropic rectangular plate, using the classical plate theory, supported on 

Winkler elastic foundation with stiffness k, 

 
2

4

2
( , )

wD w h kw q x t
t

� �	 
 
 �
�

  (1) 

where  D is the bending stiffness of the plate, h is the thickness,  � is the mass density,  and 

q(x,y) is the distributed loading, and assuming free harmonic vibrations we have 

 4 2 0D w hw kw� �	 � 
 �   (2) 

Now we rewrite this equation using two variants: 

 4 2 0D w w�	 � �   (3) 

or as 

 4 0D w kw	 
 �   (4) 
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with 2 2( )h k� � �� �  and 2( )k k h� �� � . The second representation resembles the static 

analysis of a plate on elastic foundation. The value of the generalized elastic parameter k  can be 

positive or negative. In either case, one can solve the displacements of such a plate under a given 

concentrated load. This deflection will be infinite if the plate losses its stiffness, or in other 

words, the generalized foundation is causing the plate to be unstable. 

Then, the solution for the vibration frequencies of the plate is equivalent to finding the values of 

the negative elastic foundation that will yield infinite deflection under a point load on the plate. 

The solution for a clamped plate is decomposed to the sum of three cases of plates resting on 

elastic foundation as shown in Figure 1: solution for simply supported plate with a concentrated 

load, and two cases of distributed moments along opposite edges.  Solution for simply supported 

plates with elastic foundation can be found using Navier’s method. For clamped plates we use 

the superposition of three cases, and require that the slopes along the four edges will be zero.  

 

Figure 1: superposition of 3 cases 

We plot the force P that will generate infinite deflection of the plate as a function of the value of 

�
��he vibration frequencies are found up to the desired accuracy by careful calculations at the 

neighborhood of the roots. In Table 1 the non-dimensional natural frequencies (

� �1/22 /a h D� � �� ) for three cases of square plates with clamped edges are given. The values 

are accurate up to the number of figures that is given.   

Table 1: Non-dimensional natural frequencies for square plates 

Mode CCCC CCCS CSCS 

1
st
 35.985160 31.826171 27.029892 

2
nd

 73.393610 63.330661 60.481079 

3
rd

 108.215486 71.076181 60.517721 

4
th

 131.580768 100.791635 92.102184 

5
th

 132.202316 130.350652 114.556338 

6
th

 164.995778 151.891321 114.703554 

7
th

 210.519508 159.474336 142.141247 

8
th

 220.016524 189.765965 187.645084 
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For these frequencies we can draw the shapes of the vibration modes. These are given below in 

Figure 2 for the CCCC case.  

Figure 2: Modes and frequencies for CCCC square plates 

  
Mode 1 �����35.985160 Mode 2 �����73.393610 

  
Mode 3 �����108.215486 Mode 4 �����131.580768 

  
Mode 5 �����132.202316 Mode 6 �����164.995778 

References 

1. A. Leissa, Vibration of Plates, Acoustical Society of America, 1993. 

18



On the Accurate Estimation of Damping in Structural Elements 
Mark Ewing, Aerospace Engineering, University of Kansas, Lawrence, KS 

Himanshu Dande, ESI, Farmington Hills, MI 

 

Knowledge of damping in structural elements is essential to an analyst attempting to predict 

response levels, whether amplitudes, maximum stresses or noise radiated.  In the case of excitation at a 

fixed frequency, the task of estimating damping is rather easy, as one need only measure the amplitude of 

response at the locations of interest.  But, to estimate damping over a wide frequency range, for instance 

for noise radiation, the job is more difficult. 

Many have proposed techniques such as the Power Input Method [1], the Impulse Response 

Decay Method [1] and the Random Decrement Technique [2].  The authors have used PIM, IRDM and 

RDT to compare the damping estimations of a suite of flat, free-hanging panels with a range of 4 damping 

levels and for 3 different plate sizes.  Both physical experiments and finite element analyses were used.  

The intent was to span the range of damping and panel sizes likely to be of interest in transportation 

vehicle construction.  Damping was incorporated in the NASTRAN models as a frequency-independent 

damping matrix, proportional to the stiffness matrix.   Damping loss factors of 0.01 and 0.1 were modeled 

and were, therefore, the “target” values of loss factor for the loss factor estimation schemes.  For the 

plates tested physically, available constrained layer damping materials (viscoelastic films and thin 

aluminum cover sheets) were used to outfit two 48-inch by 34-inch aluminum plates, which were 

subsequently cut to provide smaller plates of the same aspect ratio.  Estimates of the loss factors expected 

for these plates were based on the Ross-Kerwin-Ungar analysis [3] over the range of 500 to 4000 Hz as  

0.048-0.077 and 0.09-0.127. 

For all plates, the excitation was narrow-band random mechanical excitation at a point.  For both 

experimental and analytical cases, the location of the excitation point was varied to determine the 

importance of this location to the estimation.  Further, the effect of measurement location on the damping 

estimations was also studied.  Exploration of the hypothesis that measurements “too close” to the 
excitation point would result in underestimations of damping level, as put forward by the authors [4], was 

the guiding concept for this study.   

 Response levels at many 

points (up to 6693) were considered.  

The damping estimation was then 

carried out considering the response 

from each point, individually.  Then 

the average estimation from points 

lying within annular rings centered 

on the excitation point, as shown in 

Figure 1, were used to compute the 

loss factor as a function of distance 

from the excitation point.  As 

expected, estimations near the 

excitation point were always an 

underestimation in the finite element 

simulations.  The same phenomenon   

 

Figure 1.  Loss factor estimates as a function of distance from the 
excitation point for measurements in a series of annular rings. 
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was also apparent in the experimental studies.  That is, all estimations near the excitation point did 

produce a significantly lower loss factors than estimates further away. 

One way of thinking about the “nearness” of response locations is to consider the “near field” and 
“far field” with respect to excitation at a point.  The modal theory of vibration response is based on a 
reverberant field being established—far field.  Lyon and DeJong [5] used an energy balance at steady 

state to define the radius of the direct field for a “very large” plate, rD, as the distance from an excitation 

at which the kinetic energy density of the direct field equals that of the far field—inside the near field the 

energy density will be greater: 

 

Here, ω is the radial frequency, η is the damping loss factor, Ap is the plate area, ρs is the surface density 

and cg is the group velocity.  The variation of loss factor estimates with regard to the size of the direct 

field predicted by the “very large” plate assumption has been studied extensively and has shed light on the 
importance of the size of the direct field. The results of the computational studies showed that: 

� PIM consistently underestimates, as expected  

� IRDM underestimates for high damping, as expected, but is quite accurate for low damping 

� RDT estimates bound the accurate solution 

� one averaging scheme slightly underestimates, another slightly overestimates 

The results of the experimental studies are given in Figure 2 on the following page.  The results 

show that (compared with the average of RDT estimates): 

� PIM overestimates at low frequencies—not expected—especially for lower damping levels 

� IRDM underestimates consistently, as expected  

� RDT estimates seem to bound the actual damping level 

An overall observation, based on the computational studies, is that the average of the RDT 

estimates probably bound the actual loss factor.  The fact that one averaging scheme overestimates and 

the other underestimates—using the same data—has been explained in terms of the processing scheme.  

Thus, the hypothesis that IRDM, being an input-output-based estimator, would always tend to 

underestimate appears to have been born out.  But, this does not appear to be correct for PIM at the lower 

frequencies and damping levels, where overestimation occurs.   

By definition, the loss factor is the ratio of the input energy to the total energy per cycle.  For the 

many modes in a frequency band of excitation in which the excitation point is on or near a node line, any 

input force will result in a good bit of rigid body motion and little vibratory response, which is resonant or 

“magnified” response.  As such, the recorded force will not result in much kinetic energy for the energy 

input, and the loss factor will be overestimated systematically. By further systematic studies, the hope is 

to reduce the estimation errors from +/1 one order of magnitude—the accepted standard in the industry a 

decade ago—to less than a factor of 2, which is where we are today. 
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Figure 2.  Average loss factors from experimental studies. 
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A Dynamic Stiffness Formulation for Free Vibration
Analysis of Doubly-Curved Composite Shells Based on

Higher Order Shear Deformation Theory

F. A. Fazzolari and J. R. Banerjee

City University London, Northampton square, London, EC1V 0HB, United Kingdom

1 Introduction

Thin-walled shell structures are widely exploited in aerospace applications and an accurate
evaluation of their static, dynamic and aeroelastic behavior is essential to provide reliable data
to design engineers. Doubly-curved laminated composite shells have been researched for many
years because of the advantages to be gained from their high stiffness-to-weight and strength-
to-weight ratios. Many theories have been developed and used to analyze doubly-curved shells
such as those provided by Donnell [1], Mushtari [2], Love [3], Timoshenko [4] and Sanders [5]
amongst others (see Leissa [6] for a comprehensive coverage). From the huge literature available
on this subject only few attempts appear to have been made to solve the governing differential
equations in an exact way in the scarcely available literature. By using the Donnell and Flügge
assumptions Forsberg [7] solved free vibration of orthotropic circular cylindrical shells for sim-
ply supported (shear diaphragms) boundary condition. Although most of these attempts make
use of considerable simplifications, these efforts are nevertheless necessary to compare and con-
trast with exact solution. The present work represents a significant contribution to the field by
providing an exact solution procedure leading to the development of dynamic stiffness method
(DSM), for free vibration analysis of laminated composite doubly-curved shells. The DSM re-
searched by Banerjee for beam structures [8–10], is extended here, for the first time, to shell
structures using a higher order shear deformation theory (HSDT). The global DS matrix of
doubly-curved shell structures is developed as a major advancement of a recent work on com-
posite plates [11]. Hamilton’s principle is used to obtained the governing differential equations
(GDEs) and boundary conditions (BCs). The GDEs are solved in an exact sense using symbolic
computation and by exploiting the use of MATHEMATICA. The solution is implemented in a
MATLAB� code. The Wittrick-Williams algorithm [12] has been used to compute the eigen-
values of the DS matrix. Inclusion of HSDT in the DSM framework will enable free vibration
analysis of composite shells with moderate to high thickness to width ratio, in an accurate and
computationally efficient manner. The usefulness of HSDT becomes apparent when analysing
composite structures, particularly of thicker dimensions, because fiber reinforced composites
have generally very low shear modulii. Extensive results which include validation and assess-
ment of the effects of significant parameters such as the thickness-to-width (or length) ratio,
radius-to-width ratio, number of layers, stacking sequence and boundary conditions, have been
computed and discussed. The paper finishes with some concluding remarks.

2 Theoretical Formulation

In the derivation that follows, the hypotheses of straightness and normality of a transverse
normal after deformation are assumed to be no longer valid for the displacement field which is
now considered to be a cubic function in the thickness coordinate; and hence the use of higher
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order shear deformation theory (HSDT). The laminate is assumed to be composed of Nl layers
so that the theory is sufficiently general. The integer k is used as a superscript denoting the
layer number where the numbering starts from the bottom. After imposing the transverse shear
stress homogeneous conditions [13,14] at the top/bottom surface of the shell, the displacements
field is given below in the usual form:

u (α, β, z, t) =

(
1 +

z

Rα

)
u0 (α, β, t) + z φα (α, β, t)− z3

4

3h2

(
φα (α, β, t) +

1

ξ1

∂w0 (α, β, t)

∂α

)

v (α, β, z, t) =

(
1 +

z

Rβ

)
v0 (α, β, t) + z φβ (α, β, t)− z3

4

3h2

(
φβ (α, β, t) +

1

ξ2

∂w0 (α, β, t)

∂β

)

w (α, β, z, t) = w0 (α, β, t)

(1)

where u, v, w are general displacements within the shell in the α, β, and z directions, re-
spectively, whereas u0, v0, w0 are the corresponding displacements of the reference surface
(mid-plane Ω), φα, φβ are the rotations of the normals to the α, β, respectively, ξ1, ξ2 are the
surface metrics and Rα and Rβ are the radii of curvature in the α and β directions. A general
procedure for the dynamic stiffness formulation of a structural element can be summarized as
follows:

1. Obtain the differential equations of motion and the natural boundary conditions for the
problem by applying Hamilton’s principle.

2. Solve the differential equations in closed analytical form.

3. Apply general boundary condition for forces and displacements at the chosen nodes.

4. Eliminate the integration constants to relate the amplitudes of harmonically varying forces
to the corresponding displacements.

The solution of the GDEs is sought in the following form:

u0(α, β, t) =

∞∑
m=1

Um(α) eiωt sin(θ̂ β), v0(α, β, t) =

∞∑
m=1

Vm(α) eiωt cos(θ̂ β),

w0(α, β, t) =

∞∑
m=1

Wm(α) eiωt sin(θ̂ β), φα(α, β, t) =

∞∑
m=1

Φαm
(α) eiωt sin(θ̂ β),

φβ(α, β, t) =
∞∑

m=1

Φβm
(α) eiωt cos(θ̂ β)

(2)

where ω is the unknown circular frequency, θ̂ = mπ
L

and m = 1, 2, . . . ,∞. This is the so-called
Lèvy’s solution which assumes that two the opposite sides of the shell are simply supported
(S-S), i.e. w = φα = 0 at β = 0 and β = L. Substituting Eq. (2) in the GDEs a set of ordinary
differential equations (ODEs) is obtained which can be written in matrix forms as follows:

⎡
⎢⎢⎢⎢⎣

L11 L12 L13 L14 L15

L21 L22 L23 L24 L25

L31 L32 L33 L34 L35

L41 L42 L43 L44 L45

L51 L52 L53 L54 L55

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

Um

Vm

Wm

Φx

Φy

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0
0
0
0
0

⎤
⎥⎥⎥⎥⎦ (3)

23



where Lij (i, j = 1, 2, 3, 4, 5) are differential operators [11]. The solution of the ODEs can thus
be written as:

Um (α) =
N∑
i=1

Ai e
μi α Vm (α) =

N∑
i=1

Bi e
μi α Wm (α) =

N∑
i=1

Ci e
μi α

Φx (α) =
N∑
i=1

Di e
μi α Φy (α) =

N∑
i=1

Ei e
μi α

(4)

where Ai, Bi, Ci, Di and Ei are integration constants and N is the degree of the auxiliary
equation. The impositions of the boundary conditions to displacements and forces lead to the
dynamic stiffness matrix, which can be finally written as:

F = K δ (5)

where F is the forces amplitude vector, K is the DS matrix and δ is the displacements ampli-
tude vector. The assembly procedure in DSM is similar to that of the FEM. Once the global
DS matrix of the structure is formed, the best way to solve the eigen-value problem to yield
natural frequencies, is to apply the Wittrick and Williams algorithm [12]. The mode shapes
are then routinely computed by using the global DS matrix. The investigation is currently
underway. The results, discussions and conclusions will be reported in the full length paper
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Structural elements produced from laminate anisotropic composites possess more complicated
mechanical properties than components manufactured from isotropic materials. Therefore,
computer simulation of their elastodynamic response is a much more challenging task. In con-
temporary engineering practice, numerical methods based on spatial mesh discretization (FEM,
finite differences, spectral elements, etc.) are considered as universal tools of computer simu-
lation. These methods possess indisputable advantages, especially when applied to structures
with complex geometries and/or material properties. However, these methods do not work well
for elongated structures or in high-frequency applications, since the discretization requires a
larger number of elements as distances or frequencies increase. Moreover, mesh-based solutions
cannot offer the same physically clear descriptions of wave processes that analytical guided
wave (GW) representations provide.

x

y

z

Di

H

hi

Ω

Figure 1: Geometry of problem.

We would like to draw attention to an analytically-based approach; a more detailed description
may be found in Refs [1, 2] and papers cited therein. The approach is based on the use of
integral and asymptotic representations for the response displacement vector u = (ux, uy, uz) =
(u1, u2, u3). They are derived via the convolution of the Green’s matrix of the structure k(x),
x = (x, y, z), with the vector of a time-harmonic loading q(x, y)e−iωt. Alternatively, it may be
written in terms of their Fourier symbols K = Fxy[k] and Q = Fxy[q]:

u(x) = F−1

xy [KQ] =
1

4π2

∫

Γ1

∫

Γ2

K(α1, α2, z)Q(α1, α2)e
−i(α1x+α2y)dα1dα2. (1)

Here Fxy is the operator of the integral Fourier transform with respect to the horizontal coor-
dinates x and y (Fig. 1); the integration contours Γ1 and Γ2 go along the real axes, deviating
from them into the complex planes α1 and α2 for rounding real poles of the matrix K elements;
Ω is a local area at the plate’s top surface z = 0, to where the load q is applied; the factor

e−iωt is conventionally omitted. The column vectors kj of the Green’s matrix k = (k1

...k2

...k3)
are displacements excited by concentrated point loads applied to the surface z = 0 along the
basic coordinate vectors ij, j = 1, 2, 3.

Expression (1) provides explicit solution to the 3D boundary value problem for a laminated
structure with elastodynamic equations

Cijklul,jk + ρω2ui = 0, i = 1, 2, 3 (2)
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given in the subdomains Dm : |x| < ∞, |y| < ∞, zm+1 ≤ z ≤ zm of the M -layer domain
D = ∪M

m=1
Dm: |x| < ∞, |y| < ∞,−H ≤ z ≤ 0 (Fig. 1). The elastic stiffness tensor Cijkl and

the density ρ remain constant within sublayers Dm; the outer boundaries z = 0 and z = −H
are stress-free except for the loading area Ω; the sublayers are perfectly bonded.

Although the domain D is infinite, the integral and asymptotic solutions, as well as similar
ones for the internal forces, can be efficiently used with finite structural elements too. In hybrid
schemes, by combining such solutions with mesh or boundary element discretization of local
areas (flaws, stringers, rivets), they provide low-cost continuation to the rest of the structure.
Another method is to use solutions with unknown (fictitious) loads and/or body forces as special
laminate elements (LEs) meant for the approximation of reflected and scattered waves. Unlike
classical boundary elements, the LEs automatically satisfies not only the governing equations
but in addition all the boundary conditions at the plane-parallel sides and interfaces so that
only conditions at local obstacles and plate edges need to be approximated with LEs.

Efficient computational implementation of the derived solutions becomes possible with fast and
reliable matrix K calculation algorithms described in papers [1, 2], which, in fact, are kinds of
transfer matrix algorithms [3, 4]. Inside Ω and in its vicinity, the response u can be obtained by
means of direct numerical integration. With elongated structures the response manifests itself
as GWs propagating from the loading area Ω, re-radiated by local inhomogeneities and reflected
from the sample’s edges. In 3D structures, the GWs are quasi-cylindrical waves spreading out
from actuators and scatterers. In the isotropic case, representations for such GWs can be
obtained in a closed analytical form as residues from real poles ζn of the matrix K elements.
These poles ζn, coinciding with the roots of the modal characteristic equation, play the role
of GW wavenumbers; they indirectly specify their phase and group velocities cn = ω/ζn and
vn = dω/dζn.

However, with anisotropic composites, two-fold integrals (1) are generally irreducible to one-fold
ones, and the residue technique does not yield closed GW representations. As a compromise,
it was proposed to use the residue technique for one of them with numerical integration of the
remaining one [5]. As an alternative, an approximation of a 3D quasi-cylindrical GW radiation
by a superposition of 2D plane waves has been also implemented [6]. At the same time, closed-
form representations for cylindrical GWs excited in anisotropic plates by localized sources or
scattered by local obstacles were already derived as far back as in the 1980-90s, but in English
we presented them just recently, in papers [1, 2]. By combining the residual technique with the
stationary phase method, they have been obtained in the form

u(x) =
Nr∑
n=1

Nj∑
j=1

anj(ϕ, z)e
isnjr/

√
ζnjr, ζnjr → ∞. (3)

Here anj = i
√
iζnj/(2πs

′′
n(γj) resK(α, θj, z)|α=ζnj

Q(−snj, ϕ)ζnj, snj = ζnj sin γj, ζnj = ζn(θj),

θj = γj + ϕ+ π/2; ζn = ζn(γ) are angular dependent poles of matrix K elements with respect

to the polar coordinate α =
√
α2

1 + α2

2 in the wavenumber plane (α1, α2): α1 = α cos γ, α2 =

α sin γ; γj are stationary points, i.e., the roots of equations s
′
n(γ) = (ζn(γ) sin γ)

′
= 0; Nj are

the numbers of these roots; Nr is a number of real poles ζn at a frequency ω considered. With
isotropic plates, ζn are independent of γ, Nj = 1, γ1 = π/2, snj = ζn. From these simplifications,
quasi-cylindrical GWs, specified by every term of expansion (3), turn into known cylindrical
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GWs generated in isotropic waveguides by a local source. In the anisotropic case, the angular
dependence of the wavenumbers snj results in the dependence of phase and group velocities
cnj = ω/snj and vnj = dω/dsnj on the direction of propagation ϕ. It was experimentally
confirmed that the dispersion dependencies snj(ω) are what determine the group velocities vnj
and not the roots ζn(ω) as one could decide by analogy with the isotropic case.

The derived representations have been computer implemented and experimentally verified
against the data acquired by means of laser vibrometry of piezowafer actuated surface waves
[7, 8]. The measurements were carried out in cooperation with Prof. R. Lammering from
Helmut-Schmidt University, Hamburg, in the course of visits of Dr. A. Eremin to his Institute.
The abilities of the approach are illustrated by several examples of its application, such as an
investigation into frequency dependent GW directivity [2, 7], reconstruction of effective mate-
rial constants of composite plates, and tuning of actuators’ central frequencies with accounting
for material anisotropy [8].

This work is partly supported by the Russian Foundation for Basic Research, project No 12-
01-00320.
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1. Introduction 
Use of micro-devices has become more common in various electrical appliances and mechanical systems. As 

the performance of those applications is demanding, more advanced mechanical properties are required for the 

micro-device. An effective technique of vibration suppression is essential for improvement of device 

performance. The smart structure with piezoelectric (PZT) actuators and sensors is a promising solution for 

such vibration suppression of micro-devices. Among the types of smart structures, smart composites 

consisting of laminated fibrous composites, graphite/epoxy (CFRP) materials, are employed here. Adding to 

their high specific stiffness and strength, the CFRP material has an anisotropic property which can be design. 

An influence of anisotropy becomes distinguished for the micro-sized structure, and consideration of the 

anisotropy in the design of smart micro-composite is more important than the macro-sized structures. An 

efficient use of strong anisotropy of fibrous composite makes it possible to design task specific smart 

micro-devices, resulting in the improvement of micro-mechanical systems. 
 

2. Optimum design of smart composites 
The present study assumes a smart micro-composite as an application to the hard disk drive (HDD) head 

driver. Figure 1 shows (A) commercial HDD head driver and (B) the present smart micro-composite used in 

this study. Carbon fiber pre-pregs are used to fabricate the composite, and it has symmetric 6-layers. 

Finite element analysis (FEA) is used to model the smart structures and to design a controller for the 

closed-loop system. The actuator has 0.5 mm in thickness and 2.0 mm in width (Fig. 1(B)) but its mass and 

stiffness effects are neglected in the modelling since it is possible to assume the actuator is thin and light 

enough as compared to CFRP plate. The actuator is thus assumed as a segment of line in the controller design 

problem, and its end points are used as input points of control forces which are loaded in rotational 

degree-of-freedom. 

   A multidisciplinary design optimization technique for smart composite structures is presented to enhance 

the performance of the closed-loop system. Laminated composite plates are formed by thin orthotropic layers 

(i.e., pre-pregs) and the vibration characteristics depend on the lay-up configuration. At the same time, the 

vibration control performance depends strongly on the actuator placement and the designed controller. The 

simultaneous optimization of the lay-up of composite and the placements of actuators will involve high 

control performances.  
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Fig. 1 Commercial HDD head driver and the present micro composite. 

 

The optimization problem is described to achieve the above purpose by 

1

max

Minimizing :

Subject to:

z

u u

H
H H�

 
(1)

The control problem is defined to reduce the H� norm with respect to the controlled response Hz1, under the 

constraint of the H� norm with respect to the control input Hu. The design variables include the lay-up indexes 

�L to represent the lay-up configuration [�1/�2/�3]s and the actuator placements �AC. As an optimizer, a simple 

genetic algorithm (SGA) is employed with a two-point crossover, mutation and elitist tactics.  

The present optimization process is configured to follow a three-step procedure [1]. 

[Step 1] The database containing natural frequencies and modal matrixes for all possible lay-up 

configurations is prepared by repeated application of the FEA. 

[Step 2] Assuming the state feedback, the simultaneous optimization for the lay-up configuration and 

the PZT actuator placement is performed by the SGA. 

[Step 3] Reconstructing the output feedback system with the dynamic compensator K(s) based on the 

Linear Matrix Inequality (LMI) approach. 

3. Experimental method 
The present experimental setup is shown in Fig. 2. There is a difficulty in exciting the micro-device 

experimentally by an impulse hammer or external exciter due to limitations on size and their high natural 

frequencies. The present paper employs an innovative vibration testing method for the smart micro-structures 

using an impulse excitation invoked by a laser ablation [2]. A pulse laser irradiated by a high power yttrium 

aluminium garnet (YAG) laser device ablates quite small mass of the surface instantly and this generates an 

ideal impulse force to the structure. Further, the laser ablation excites structures without physical contacts, 

resulting in high reproducibility since the laser beam can be irradiated precisely at the same point of structure 

with the pre-set same power. The velocity response is also measured by the laser Doppler vibrometer (LDV). 

 

Fig. 2 Experimental setup of the present vibration control system. 
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Table 1 Suppression amount of magnitude for the first peak. (experimental results) 

Suppression amount [db] 
[-15/-15/-15]s 

(Opt.) 

[0/0/0]s 

(Unidirectional) 

[0/90/0]s 

(Cross-ply) 

[45/-45/45]s 

(Angle-ply) 

Measured -15.28 -13.68 -12.36 -3.98 

Calculated -16.30 -6.60 -8.66 -0.65 

 

 

(i) Measured power spectrum of velocity (ii) Calculated FRF of velocity 

Fig. 3 (i) Measured power spectrum and (ii) Calculated FRF of velocity for the obtained optimum smart 

composite [-15/-15/-15]s. 

 

4. Numerical and experimental results 
Table 1 indicates reduction amounts of the fundamental frequency in the dB scale obtained by the numerical 

calculation and experiment. Results of plates with typical lay-ups are also listed in Table 1 for comparison, 

where comparative plates have fixed lay-ups but optimum actuator placements calculated by the similar 

procedure with the present method. The suppression amounts are calculated by using the frequency response 

function (FRF) for numerical calculation and the power spectrum of velocity for the experiment, and both 

values cannot be compared directly. Figure 3 shows the power spectrum and FRF for the optimum results by 

the experiment and calculation, respectively. 

Although there are some differences between calculated and measured results in Fig. 3, both sets of results 

show similar tendency in the performance of vibration suppression in Table 1. The optimum plate shows the 

largest reduction and the angle-ply plate does the lowest. Therefore, it could be concluded that the present 

optimization method is effective for smart micro-composite and the laser ablation technique works well as the 

excitation method for the micro-sized structures. 

 
Reference 
[1] Honda, S., Kajiwara, I., and Narita, Y., 2011. “Multidisciplinary design optimization for vibration 

control of smart laminated composite structures”, Journal of Intelligent Material Systems and 

Structures, 22(13), pp. 1419-1430. 

[2] Hosyoya, N. and Kajiwra, I, and Hosokawa, T., 2012, “Vibration testing based on impulse response 

excited by pulsed-laser ablation: Measurement of frequency response function with detection-free 

input”, Journal of Sound and Vibration, 331(6), pp. 1355-1365.  
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Introduction The dynamics of a family of simple, but extremely useful structural elements is governed by 

a second order Sturm-Liouville equation.  This equation allows for the uniform distribution of mass and 

stiffness and enables the motion of strings and shear beams, together with the axial and torsional motion of 

bars to be described exactly.  As a result, each member type in this family has been treated exhaustively 

when considered as a single member or when joined contiguously to others.  However, when such members 

are linked in parallel by uniformly distributed elastic interfaces, their complexity becomes significantly more 

intractable and it is this class of structures that has led to renewed interest and which forms the basis of the 

work that follows.

Initially, differential equations governing the coupled motion of the system are developed from first 

principles.  These are organised into the form of a generalised linear symmetric eigenvalue problem, from 

which a family of uncoupled differential operators can be established.  These operators define a series of 

exact substitute systems that together describe the complete motion of the original structure.  These 

equations can then be used in either of two ways. In their most powerful form they can be developed into 

exact dynamic stiffness matrices that enable all the powerful features of the finite element method to be 

utilised.  This subsequently enables sets of members carrying point masses and subject to point spring 

supports to be analysed easily.  Alternatively, the equations are able to yield an exact relational model that 

links any uncoupled frequency of an original member to the corresponding set of coupled system 

frequencies.  This approach enables ‘back of the envelope calculations’ to be undertaken quickly and 

efficiently. The exact mode shapes of the original structure can be recovered in either case. Due to space 

limitations, only aspects of the first technique are described briefly herein, but both are covered exhaustively

elsewhere [1].

Theory  The theory below has been developed for an easily envisioned set of taut string members that are 

connected to each other by elastic interfaces of unequal stiffness, with the top (i = 1) and bottom (i = n)

members being additionally connected to foundations. However, the approach applies equally to all the 

member types previously mentioned.  Thus, adopting the assumptions of classical string theory, limiting 

attention to free vibration and introducing the non-dimensional length parameter, Lx /�� , the equation of 

motion for a typical elemental length of string, i, and its corresponding constitutive relationship are easily 

shown to be

0)()( 22

1111 ������ ���� iiiiiiiiii VDrVkVkkVk �� and     �ddVLrQ iii /� (1a,b)

where 1and �ii kk are the stiffness / unit length of the elastic interfaces connecting adjacent strings or 

foundations and ii QV and are the amplitudes of the lateral displacement and vertical component of string 

tension, respectively,
222 / �ddD � ,

2/ LTr ii � , iii rm /�� , im is the mass / unit length, L is the length 

of all members comprising the set and � is the circular frequency.  It is now assumed that ii Tm / is 

constant for all i and hence that 

                                                              TmLi /2�� �� = constant                                                            (2)

This enables the governing equations for the first, last and typical members to be written, respectively, as
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                                 0)( 1122121 ���� VrVkVkk � , 0)( 11 ����� �� nnnnnnn VrVkkVk �           (3a,b)

and

                                               0)( 1111 ������ ���� iiiiiiiii VrVkVkkVk �                                        (3c)

where

                                                                         
22 ��� �� D                                                                  (4)

and 1k and 1�nk can be zero or non-zero in any combination, thus defining the longitudinal boundary 

conditions.

Eqs.(3) enable a complete set of equations to be assembled for an n level system, as indicated by Eq.(5a)
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where zeros have been omitted for clarity. Eq.(5a) can then be written concisely as

                                                                           � � 0Vrk ���                                                                 (5b)

The form of Eqs.(5) is that of a generalized symmetric linear eigenvalue problem, for which a number of 

standard routines are available for calculating the eigenvalues, � , and corresponding modal vectors, V .

Substitute systems The n values of � that satisfy Eqs.(5) define a family of second order differential 

operators that satisfy the original problem and which are given by Eq.(4) as

                                                             iD ��� �� 22 i = 1,2,……n                                     (6)

Eq.(6) can be assigned a physical context by noting that it is a property of such differential operators that 

they can be written as

                                                    iii VVD ��� �� )( 22 i = 1,2,…n                                               (7)

and hence that

                                                           0)( 22 �� ii VD � i = 1,2,…n                                        (8)

where

                                                                        ii ���� �� 22
                                                  (9)

and iV is a typical lateral displacement amplitude.  In this case, each equation now describes the free 

vibration of a single unified member, but supported on a Winkler foundation of different magnitude in each 

case.  Eqs.(8) therefore represent n substitute systems, each of which yield an infinite number of frequencies 

that, when arranged in ascending order, comprise the complete spectrum of frequencies of the original 

problem.  It therefore follows that the fundamental frequency of the original problem is given by the single 

substitute system that yields the lowest frequency, namely the one that incorporates the lowest linear 

eigenvalue derived from Eqs.(5).

An exact stiffness formulation (exact finite element) is now adopted to solve the ith
substitute system and can 

be expressed as

32



�





�
�

	
�





�
�

	
�

�
��






�
�

	

1

0

1

0

1

1

i

i

i

i

i

i
i

i

i

V
V

C
C

S
Lr

Q
Q �

(10)

where

0forsinandcos 2 ��� iiiii SC ��� and 0forsinhandcosh 2 '�� iiiii SC ��� (11a,b)

and the subscripts 0 and 1 relate to the left and right hand end of the unified member, respectively.

Identical boundary conditions are now imposed on each substitute system in turn by adding spring supports 

and/or nodal masses at both 1and0 �� �� .  There is no requirement for the masses to be the same at each 

end and the stiffnesses can be assigned any value between zero (free support) and (� (clamped support).  

The required natural frequencies stemming from each of the n substitute systems can then be converged upon 

to any desired accuracy using the Wittrick-Williams algorithm.  All the frequencies thus calculated are 

natural frequencies of the original system and can be arranged in ascending order to cover any frequency 

range of interest, which will be guaranteed to be fully populated if the highest frequency is bounded above in 

each of the substitute systems.

Example   Consider now the problem of two identical and parallel taut strings of length 1 m that are linked 

by an elastic interface of stiffness k = 200 N/m2
.  The mass/unit length and string tension for both members 

are 0.01 kg/m and 50 N, respectively.  The results are presented in Table 2, where they are compared with 

those of Oniszczuk [2].  It is interesting to note that in this example the natural frequencies corresponding to 

anti-symmetric modes are identical to the uncoupled frequencies of the two members, since both members 

move identically in the same direction and do not extend the massless elastic interface that connects them.  

Hence 0.01 �� .

Table 2 Comparison between the natural frequencies given by Oniszczuk [2] and the presented theory for 

the parallel string problem described above.  The frequencies correspond to either A/S (Anti-Symmetric) or 

S (Symmetric) modes about the horizontal axis of symmetry.  * This value has been confirmed as a typing 

error in the original paper and should be 222.1.

Modal

No.

Natural frequencies (rad/sec)

[2] Presented theory

A/S S Substitute 

system 1

Substitute 

system 2

0.01 �� 0.82 ��

1 221.1* 298.9 222.144 298.911

2 444.3 487.2 444.288 487.229

3 666.4 695.8 666.432 695.796

4 888.6 910.8 888.577 910.806

5 1110.7 1128.6 1110.72 1128.58

6 1332.9 1347.8 1332.86 1347.80
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Spurious Modes

The idea of modelling a solid with holes or cut-outs by embedding negative bodies was mooted in a 

previous symposium [1]. This concept emerged following the successful use of negative stiffness and 

negative mass in modelling constraints in vibration analysis [2,3]. In constraint modelling, it was 

found that the use of large magnitudes of either stiffness or inertial type penalty parameters effectively 

created a constraint, irrespective of the sign of the penalty parameter. The use of positive and negative 

values helped to determine and control the error due to constraint violation. Although triggered by the 

above mentioned developments, the use of negative structures, i.e. structures possessing both negative 

stiffness and negative mass, for the purpose of modelling voids, is actually a different concept.  An 

attempt to test this procedure by removing a cantilever beam segment in a longer cantilever beam by 

embedding a negative cantilever beam produced natural frequencies and modes of the remaining free-

free beam. However, there were also extra spurious modes, some of which could not be explained. 

The embedding was achieved by using a continuous distribution of penalty terms. Further studies 

show that the extra spurious modes fall into two different categories and could be identified by their 

shape. One type is associated with violation of the embedding constraints thus permitting the 

embedded negative parts and the associated positive part to have differential displacements. An 

example of this type of spurious modes is given in Figure 1. The figure shows a completely free 

square plate on which a negative free plate is embedded at the centre. As can be seen from the figure,

the negative part, (the smaller plate at the centre) vibrates differently from the positive part. This type 

of spurious mode seems to occur at high frequencies. There is another type of spurious modes where 

the embedded negative part and the associated positive part move together without any violation of 

the constraint, but the remainder of the structure remains stationary. Figure 2 shows an example of 

this type of spurious mode. In this mode, only the domain in which the negative part is attached 

vibrates and there is no discrepancy between the displacement of the positive and negative parts. This 

is understandable since the positive and negative parts completely cancel each other, so they do not 
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result in any net forces or moments that need to be transferred to the remaining structure, which 

therefore does not participate in vibration. However, some of the modes in this category showed an 

anomaly in discrete systems where degrees of freedom that were connected to the actual structure had 

some displacement while the rest of the structure was stationary. This caused some initial concern as 

it implied that some force would have to be induced at the boundaries, in which case the lack of any 

motion of the remaining structure would indicate violation of Newton’s law. However, it was noted 

that these occurred at very high frequencies which in the limiting case would approach infinity, thus 

while the displacement may approach zero the accelerations may be finite and be consistent with the 

boundary force.

There are still some additional spurious modes for which it is difficult to make a classification as 

described above [l]. This may be due to large round off errors and work is still in progress to 

understand those extra modes.

Elimination of spurious modes:

One possibility to distinguish at least some spurious modes from desired, original modes of the 

structure under consideration is to set the density of the negative structure not to the exact counterpart 

of the positive one. Instead, the absolute value of the density of the negative structure can be set to be 

slightly lower than that of the positive one leading to small residual portions of mass. Since the 

stiffness properties are cancelled completely, this leads to spurious modes with very low natural 

frequencies, which can be eliminated as desired. This technique is especially suitable for assembled 

structures whose first natural frequency is known to be higher than a certain value, e.g. brake discs 

with inserted holes, whose first actual frequency will at least be an order of magnitude higher than the 

frequencies of the spurious modes [4,5].

Figure 1. An example of a spurious mode for which there is a violation of constraints between the 

positive and negative parts.
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Figure 2. An example of a spurious mode for which only the negative part vibrates together with 

the associated positive part while the remainder of the structure remains stationary.
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In another paper being presented at this symposium [1], the existence of natural 

frequencies and modes of a solid structure which includes an embedded negative 

structure is discussed. The same paper also describes the challenges associated with 

the presence of some spurious modes. In this paper, we explain the presence of actual 

and spurious modes using the exact dynamic stiffness method. We limit the analysis 

to structures consisting of an assembly of continuous systems (possessing both 

positive and negative elastic and inertial properties) which are connected at certain 

nodal points.

Consider modelling an original structure [o] with a void, see Figure 1(a). This could

be represented by connecting the full (i.e. perfect) structure [f] to a negative structure 

[n] which completely cancels part of [f] to yield [o], see Figure 1(b).

This may be considered as the actual structure [o], linked to a positive structure [p] 

and a corresponding negative structure [n] as shown in Figure 1(c).

The nodes of the system are denoted as follows in the figure:

o Nodes which are internal to structure (o)

p Nodes which are internal to structure (p)

n Nodes which are internal to structure (n)

c Nodes which are common to all the structures

The nodes denoted p and n are linked together by stiff springs [s].

Let the displacement vectors for the nodes denoted o, p, n and c be do, dp, dn and dc
respectively.

Then the dynamic stiffness matrices and displacement vectors for the system 

components can be written as follows.

���� ������� ���� ,         ����� � for structure [o] (1)

�	

 	
�	
�� 	��� ,         ����� � for structure [p] (2)

��	

 �	
��	
�� �	��� , ��
�� � for structure [n] (3)

� � ���� � � ,          ����
� for the springs [s] (4)

where S is a diagonal matrix of (large) spring stiffnesses, and superscript T denotes 

transpose.
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Thus the global dynamic stiffness equations for free vibration are assembled as

���� � � ���� 	

 + � �� 	
�� �� �	

 + � �	
����� 	
�� �	
�� ���
�   ������
��

�  =   ������ (5)

Eliminating the internal nodes of structure [o] gives

�	

 + � �� 	
��� �	

 + � �	
�	
�� �	
�� ���� �   ����
�� �  =   ����� (6)

where  ���� = ��� � ����  ����
���
Adding the first two rows of Eq. (6) gives 	

��� � �
� =  � (7)

which is satisfied either if |	

|=0 or if �� = �
.

[o]

o oc c

(a)

[o]

o oc cc

(a)

[n]
cc n

[f]

o oc c

[s]

p

(b)

[n]
cc c

[f]

o oc cc

(b)

[o]

o oc c

[n]
cc n

[p]
c cp

[s]

(c)

Figure 1. (a) Original structure [o] with a void. 

(b) Full structure [f] attached by springs [s] to a 

negative structure [n]. (c) Original structure [o] 

linked to positive [p] and negative [n] structures 

attached by springs [s].

Figure 2. (a) Original structure [o] with damage. 

(b) Full structure [f] attached to a negative 

structure [n]. (c) Original structure [o] linked to 

positive [p] and negative [n] structures.

(c)

[o]

o oc c

[p]
c cc

c

[n]
cc c
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In the latter case, the displacements at nodes p and n have been made equal regardless 

of the magnitude of the spring stiffnesses S, and the third row of Eq. (6) gives 

���� �� =  � (8)

which is identical to the dynamic stiffness equation for structure [o] obtained from Eq. 

(1) when its internal nodes have been eliminated.

The former case |	

|=0 gives additional spurious eigenvalues, so that the 

eigenvalues of the combined system are those of structure [o] (i.e. as required),

together with those for which |	

|=0 (i.e. spurious eigenvalues).

Figure 2 shows an analogous model in which the actual structure [o] contains a region 

of damage (i.e. reduced stiffness) rather than a void. In this case, all nodes of 

structures [p] and [n] also belong to structure [o], so there are no internal nodes 

denoted p and n. Hence 	

 does not exist, no springs are required and the global 

dynamic stiffness equations (5) simplify to

���� ������� ����   ������  =   ���� (9)

i.e. those of the original structure.  Thus there are no spurious eigenvalues.

The difficulty for problems with voids (such as that illustrated in Figure 1) could 

conceivably be avoided by adding to structure [o] nodes corresponding to nodes p and 

n (which will therefore become common nodes c), and connecting them to the rest of 

structure [o] by members with very low stiffness.  If these members have no mass 

there will be no problems associated with their local modes of vibration.

All the above arguments are valid for both discrete and continuous systems provided 

the force (or moment) - displacement (translation or rotation) relationship at the nodes 

or nodal lines can be expressed exactly in terms of the frequency. However, the 

component members of continuous systems conceptually include infinitely many 

internal nodes and those of structures [p] and [n] will necessarily be distinct.  Thus, 

for the examples of both Figures 1 and 2, spurious modes associated with the fixed-

end natural frequencies of structures [p] and [n] might be expected.

The symposium presentation will include an in-depth exploration of the ideas outlined 

here, illustrated with results for systems of beams.
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1. Introduction 

This paper studies highly-efficient motion of a flexible robot arm to throw a ball. Many researchers have 

investigated the vibration suppression control of flexible robot arms to achieve the precise motion [1]. Flexible 

structures are used for sports equipment to obtain high performance of motion [2]. In this paper, a flexible arm 

is used to store potential energy and throw a ball effectively. Input torque determined by using optimization 

technique is utilized for a motion of the flexible arm. Simulations and experiments are performed to confirm 

the usefulness of the effective ball-throwing motion.  

2. Model descriptions and state equation 

Figure 1 shows the model of the flexible robot arm to throw a ball. The model consists of a hub with the 

radius rh and a flexible beam fixed on the hub. The beam has a ball holder with a ball at the end of the beam. 

The O-XY coordinate denotes the inertial reference frame which is in global coordinate. The angle � is the 

rotational angle of the hub under the torque �. The beam is treated as a homogeneous isotropic one with 

uniform cross section. Displacement at an arbitrary point x of the beam is represented by �(x,t). When the 

modal analysis is employed, the displacement �(x,t) is approximated as  

)
�

�
n

i
ii tqxtxv

1

)()(),( � ,     (1) 

where )(xi�  is the eigenfunction of the vibration of the cantilevered beam and )(tqi  is the time function for 

each mode of the vibration. 

Following the Hamilton’s principle, we can obtain the governing equations of the system as follows:  

* +Tnqqq ���� 21, �, ���� zDKzzCzM         (2) 

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix and * +T001 ��D is the 

input vector. Vector z consists of the angle of the hub and time functions for each mode of the vibration of the 

beam. Introducing state vector * +Tzzx �,� , Eq.(2) is rewritten as 

,BAxx ���       (3) 

where 
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In this paper, we call the system holding a ball as Model 1 

and the system without ball as Model 2. Model 1 is 

employed during the takeaway and throwing motion before 

the velocity of the hand becomes maximum value. At the 

maximum velocity of the hand, the ball is released and 

Model 2 is employed for the following simulation. 

 

Fig.1 Model of a ball throwing robot arm 
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3. Input torque optimization 

Whole motion of the robot arm is designed as the ball-throwing motion following the takeaway motion. To 

realize this motion, input toque is determined by the combination of sinusoidal functions as follows: 
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where A1 and T1 are the amplitude and period for the takeaway motion, and A2 and T2 are the amplitude and 

period for the ball-throwing motion. These four parameters are optimized by employing Genetic Algorithm 

(GA) and Particle Swarm Optimization (PSO) [3]. A cost function for the PSO is defined as 
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1 21
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max
1

TTwdtttuw
v

wJ �� ,       (6) 

where vmax is the release speed of the ball and wi denotes the weight for each term. This cost function is 

minimized to obtain the optimized solution. Second term expresses the external work done by the motor and 

third term is the input time of the torque. In the case of the GA, inverse function of Eq. (6) is used as the cost 

function to maximize. 

4. Simulation and experiment 

Experimental study is performed by using a steel beam reinforced by FRP whose length is 0.37m and 

bending rigidity is 2.12Nm2. Figure 2 shows the experimental setup. A direct drive motor (SGMCS-05B3C11, 

YASKAWA) is used to rotate the robot arm. Strain of the beam is measured and control command is 

generated by using the DSP controller (iBIS DSP 7101, MTT Corp.). A robot hand to hold a ball is attached at 

the tip of the beam. An artificial muscle, which is a pneumatic actuator (Sik-t-BW12PE30S, SQUSE), is used 

to actuate the hand mechanism. While the robot arm is operated for the takeaway motion, the robot hand is 

closed to hold the ball. When the velocity of the robot hand becomes fastest, the robot hand is opened to release 

the ball. A tennis ball was used in this experiment. Weighting coefficients in Eq. (6) are given as w1=20, w2=1 

and w3=0.1 in the simulation. Fundamental natural frequency of the arm with the hand mechanism is 4.821Hz. 

Considering the constraint conditions like maximum torque of the motor and maximum deformation of the 

beam, simulations by GA and PSO were conducted to obtain the optimum combinations of parameters. As the 

result of five times calculations by PSO and GA, the cost function by PSO showed better values than that by 

GA. Although here is a possibility to tune parameters for GA better, the best set by PSO (A1, T1, A2, T2) = 

(0.058, 0.102, 2.285, 0.582), was selected as the 

input for experimental study. The value of the cost 

function was J = 6.551. 

Figure 3 shows the comparison of rotating angles 

between the simulation and experiments. Vertical line 

shows the release point of the ball where the velocity 

of the ball becomes fastest. Figure 4 shows the 

comparison of the strain of the arm between the 

simulation and experiment. Although here is a slight 

phase difference between both results, the simulation 

result expresses the dynamic property of the robot 

arm well.  

Fig.2 Experimental setup 
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   A simultaneous optimization of parameters for the 

input torque and the beam is attempted by adding the 

bending rigidity and length of the beam as the 

parameters. As the result of calculations by PSO, the 

best result was obtained in the case (A1, T1, A2, T2, EI, l) 
= (2.676, 0.100, 4.659, 0.324, 4.950, 0.353). The value 

of the cost function J = 6.484 was smaller than that of 

the previous optimization result. 

Figure 5 shows the comparison of velocities of the 

robot hand between rigid and flexible arms. At the 

release point of the ball, velocity of the flexible arm is 

faster than that of the rigid arm. This result shows the 

possibility that we can design a flexible robot arm of 

high performance by utilizing the flexibility as an 

energy storage mechanism. 

5. Conclusion 

This paper derived the state equation for the ball-throwing flexible manipulator. GA and PSO algorithms 

were introduced to optimize the parameters for the input torque. Simultaneous optimization of the parameters 

for input torque and structure were also studied by the simulation. Simulation results show good agreement 

with those of experiment and the optimized results for the flexible arm gave better performance than that of the 

rigid arm. 
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The dynamic stiffness matrix is obtained for a Bernoulli-Euler beam with one or more open cracks, 

each concentrated at a specific axial location. Such a crack is represented by a rotational spring of 

stiffness ��, which is assumed to be related to the crack depth � by a suitable empirical formula, e.g.

see [1, 2].

A beam portion containing a single crack is modelled by connecting two elements, labelled A and B, 

as shown in Figure 1.  The exact dynamic stiffness equations for such an element � (=A, B), 

connecting nodes ! and ", with length #$, Young’s modulus %, second moment of area & and mass 

per unit length ', which is vibrating at frequency ( are given by [3]

)*
- ./0/.10123

4 = 5 6$ 7$ ��$ 8$7$ 9$ �:$ ;$��$ �:$ <$ �>$8$ ;$ �>$ ?$
@ AB/C/B1C1

D (1)
where, for a uniform member,6$ = <$ = %&HI �J$K$� + K$J$� � L$M 7$ = >$ = %&HN �J$J$� � L$M9$ = ?$ = %&H �J$K$� � K$J$� � L$M �$ = %&HI �J$ + J$� � L$M8$ = :$ = %&HN �K$� � K$� L$M ;$ = %&H �J$� � J$� L$M         D   (2)

K$ = cos(H#$) J$ = sin(H#$) K$� = cosh(H#$), J$� = sinh(H#$)H = P'(N %&MQ L$ = 1 � K$K$�   R (3)
Axial stiffness is disregarded, so only transverse displacements and rotations are considered. 

Connecting elements A and B as shown in Figure 1 gives the stiffness equations

Figure 1.  (a) Beam of height T with a crack of depth �.  (b) Rotational spring model.

(a)

dh

(b)
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LA LB
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where the presence of the rotational spring results in the separate moments and rotations at node 1, 

indicated by the subscripts A and B.  Applying partial Gaussian elimination, without row 

interchanges, to the first three rows and columns of Equation (4) gives the stiffness equations for the 

combined element (AB) in the form of Equation (1) with 6$ = 6V � 8VN`
 � a
NbI 7$ = 7V � 8V;V`
 � a
aNbI9$ = 9V � ;VN`
 � aNNbI �$ = �8V:Wb
bN + a
aIbI8$ = �8V;Wb
bN � a
adbI ;$ = �;V;Wb
bN � aNadbI<$ = <W � :WNbN � aINbI >$ = >W � :W;WbN + aIadbI?$ = ?W � ;WNbN � adNbI :$ = �;V:Wb
bN + aNaIbI
                              

2U3
U4 (5)

where a
 = ��V + 8V`N aN = �:V + ;V`NaI = ��W + :W`I ad = 8W � ;W`I`
 = b
(;� + b
bN) `N = >V`
 � 7Wb
bN`I = bN(7W � >Vb
) b
 = 1 (1 + ?V;�)MbN = 1 (9W + ?Vb
)M bI = 1 (<V + 6W � >VN`
 � 7WNbN + 2>V7Wb
bN)M
      

2U3
U4 (6)

and ;� = 1 ��M is the compliance of the spring.  If there is no crack, ;� = 0 and the expressions in 

Equation (5) reduce to those of Equation (2) for a uniform beam of length #$ = #V + #W.

Multiple cracks connecting elements A, B, C, … are modelled by recursively applying the above 

procedure to derive element AB from elements A and B, element ABC from AB and C, and so on, 

until a 4×4 dynamic stiffness matrix � is obtained for the whole beam.  Thus the damaged beam can 

be easily assembled into a larger frame structure.

Undamped natural frequencies are found to any required accuracy using the Wittrick-Williams 

algorithm [4].  The number of natural frequencies lying below a trial frequency (� is given byg = j{�} + k g$ +$ k g�� (7)
where: j{�} is the sign count of �, i.e. the number of negative leading diagonal elements of the 

upper triangular matrix obtained from � by standard Gaussian elimination; for each element � = A, 

B, C, …, g$ is the number of fixed end natural frequencies lying below (�; and for each crack 9,g� = jm{b
} + jm{bN} + jm{bI} (8)
where jm{b} = 1 if b < 0, and = 0 otherwise.

Analysis by previous authors also included shear and longitudinal springs [5], and obtained the 

dynamic stiffness matrix using a series solution [6].  The results in Tables 1 and 2 show that the 

present method compares well with these earlier approaches. In addition, it permits the use of the 

Wittrick-Williams algorithm to determine higher natural frequencies exactly without requiring the 

insertion of additional nodes in the global stiffness matrix.
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Table 1. Natural frequencies of a cantilever beam of length 0.2 m, depth h = 0.0078 m, EI = 213.548 

Nm
2
, m = 1.5308 kg/m, with a crack of depth d located at a distance #V from the clamped end.

LA

(m)

LB

(m)

d/h k*

(kNm/rad)
�1 (rad/s)

Present       [5]

�2 (rad/s)

Present       [5]

�3 (rad/s)

Present       [5]

- - Intact ( 1038.2 1038.2 6506.3 6506.4 18218 18218

0.08 0.12 0.2 130 1034.6 1031.8 6469.6 6441.3 18152 18098

0.08 0.12 0.4 28.8 1022.2 1010.1 6348.9 6237.0 17942 17740

0.08 0.12 0.6 8.39 985.98 949.82 6036.0 5768.5 17447 17015

0.12 0.08 0.2 130 1037.3 1036.6 6456.8 6419.0 18137 18070

0.12 0.08 0.4 28.8 1034.2 1030.9 6292.3 6139.9 17879 17633

0.12 0.08 0.6 8.39 1024.4 1013.7 5852.0 5468.2 17276 16761

Table 2. First four (non-rigid) natural frequencies of a beam of length 1.208 m, depth h = 0.01 m, 

EI = 1477 Nm
2
, m = 6.30 kg/m, with free ends and symmetrically located cracks of depth d in the 

top and bottom surfaces at a distance #V = 0.445 m from one end.

d/h k*

(kNm/rad)
�1 (Hz)

Present      [6]

�2 (Hz)

Present      [6]

�3 (Hz)

Present      [6]

�4 (Hz)

Present      [6]

Intact ( 37.4 36.6 103.0 100.9 201.9 197.8 333.8 326.9

0.1 602.5 37.3 36.5 102.8 100.7 201.9 197.8 333.2 326.3

0.2 111.9 37.0 36.2 102.1 100.1 201.9 197.7 330.6 323.9

0.3 33.27 36.1 35.4 100.3 98.3 201.8 197.7 324.0 317.7

0.4 7.766 32.7 32.2 94.3 92.6 201.6 197.5 304.6 299.0

The Symposium presentation will include results for frames formed of multi-cracked beams.  It is 

planned to study in depth the effects of damage on the natural frequencies and mode shapes, with a 

view to the identification of damage by vibration measurements and analysis similar to that in [7].
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1. Introduction   Recently, technology of micro electro-mechanical systems (MEMS) has been 
developed drastically. In such devices, lightweight thin plates and shell-panels are widely utilized. 
In practical applications, the boundaries of the plates and shells are often constrained by other 
elastic structures. Furthermore, the boundaries might be subjected to non-uniform in-plane 
compression as well as uniform compression. Nonlinear and chaotic vibrations of the shell-panels, 
which are generated owing to dynamic snap through or internal resonance, are sensitive to the 
boundary conditions. Therefore, in this paper, analytical results are presented on chaotic vibrations 
of a shell-panel with in-plane asymmetric elastic constraints. The simply supported shell-panel is 
subjected to gravitational and periodic acceleration laterally. The panel is also constrained with 
in-plane uniform and asymmetric displacements elastically. Neglecting the effect of in-plane inertia 
force, the Donnell type equations modified with lateral inertia are applied as the governing 
equations of the shell-panel. The response of lateral deflection is assumed with multiple modes of 
vibration. Stress function is introduced to satisfy compatibility equation and in-plane boundary 
condition. Applying the Galerkin procedure, equation of motion is reduced to a set of nonlinear 
ordinary differential equations. Nonlinear periodic responses are calculated with the harmonic 
balance method. Non-periodic responses are integrated numerically. 
 
2. Procedure of Analysis   Fig. 1 shows the analytical model of the rectangular shell-panel in this 
research. All the symbols in the figure are shown with non-dimensional notations. We introduce the 
ξ ,  η  axes along the in-plane directions of the shell-panel and the z axis in the lateral direction. The 
origin is taken at the center of the panel. The symbols α x,��α y  are non-dimensional curvatures in ξ 
and η directions, respectively. The symbols w,  w

0
 denote the deflection and initial deflection of the 

panel, respectively, and   u, v  are in-plane displacements in the ξ and η directions, respectively. We 
assume that the boundaries of the panel are simply supported in the lateral direction and are 
elastically constrained in the normal in-plane direction. The symbols k

xm
, k

xp
 and k

ym
, k

yp
 are spring 

constants per unit length corresponding to the elastic constraints. At the outer ends of the elastic 
constraints, initial uniform in-plane displacements u

0ms
, u

0ps
,  v

0ms
, v

0ps
 and initial asymmetric in-plane 

displacements u
0ma

, u
0pa

,  v
0ma

, v
0pa

 are applied in the ξ ,  η  direction, respectively. The Poison’s ratio of 
the panel is denoted by ν . In the lateral direction, the shell-panel is assumed to be subjected to 
static and periodic acceleration ps + pd cosωτ , where p

s
,  p

d
 are magnitude of static acceleration and 

amplitude of periodic acceleration, respectively, ω  is the excitation frequency and τ  is the time. 
We assume the panel is sufficiently thin and that the in-plane inertia can be neglected, the equation 
of motion of the shell-panel is expressed as the following equations. 

    

L(w, f ) = w,ττ +∇
4 (w −w0 )−α xβ

2 f ,ηη −α y f ,ξξ �−β 2 ( f ,ξξ w,ηη −2 f ,ξη w,ξη − f ,ηη w,ξξ )

���������������������                                                   − (ps + pd cosωτ )− qsδ (ξ −ξ1)δ (η −η1) = 0
 (1a)

 

    
∇4 f = c −α xβ

2 w −w0( ),ηη −α y w −w0( ),ξξ +β 2 w,ξη
2 −w0

2,ξη − w,ξξ w,ηη −w0,ξξ w0,ηη( ){ }⎡
⎣

⎤
⎦  (1b) 

Equation (1a) denotes the equation of motion of the panel in the lateral direction, and Eq (1b) is the 
compatibility equation of the in-plane strain in terms of the stress function  f , which is related to 
the in-plane resultant force n

x
,  n

y
,  n

xy
 as follows. 

    n
x
= β 2 f ,ηη ,  n

y
= f ,ξξ ,  n

xy
= −β f ,ξη  (2) 

The simply-supported boundary condition for the deflection is denoted by, 
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    ξ = −1 2,  1 2  :  w = 0,  w,ξξ = 0,     η = −1 2,  1 2  :  w = 0,  w,ηη = 0
.
 (3) 

The deflection and initial deflection, satisfying the foregoing condition, are assumed as follows. 
    w ξ ,η,τ( ),w0

ξ ,η( )⎡⎣ ⎤⎦ = b̂mn τ( ), âmn
⎡⎣ ⎤⎦ζ̂mn ξ ,η( )

n
∑

m
∑ ,   ζ̂mn ξ ,η( ) = sin mπ ξ +1 2( )⎡⎣ ⎤⎦sin nπ η +1 2( )⎡⎣ ⎤⎦  (4) 

The notation 
  
b̂mn τ( )  is unknown time function, 

  âmn  is the known constants for initial deflection and 

  
ζ̂mn ξ ,η( )  is the sinusoidal function for the coordinate function. The integers   m,  n  are half-wave 
numbers in the 

 
ξ ,  η  directions, respectively. 

    The solution of the compatibility equation (1b) can be expressed as follows. 

    
  
f = f

0
+ f

1
+ f

2
,     f

0
= 1

2
pyξ

2 + 1

2
pxη

2 + pxyξη + 1

6
pyaξ

3 + 1

6
pxaη

3  (5) 

In the above expression, f
1
,  f

2  
are the particular solution corresponding to the linear and square 

terms of deflection, respectively, in the right-hand-side of Eq. (1b), which can be expressed with 
trigonometric functions. The notation f

0
 is the approximated homogeneous solution of Eq. (1b), 

where px, py correspond to uniform normal stresses, pxy denotes uniform shear stress and pxa, pya 
denote normal stresses proportionally distribute along the edges. These unknown coefficients can be 
determined by equating the virtual work by the in-plane forces, which corresponds to the in-plane 
boundary condition, to be zero as follows. 

    

nx + kxp u − u
0 ps − 2u

0 paη( ){ }δu dη
−1 2

1 2

∫⎡⎣⎢
⎤
⎦⎥ξ=1 2

− nx − kxm u − u
0ms − 2u

0maη( ){ }δu dη
−1 2

1 2

∫⎡⎣⎢
⎤
⎦⎥ξ=−1 2

+ β ny + kyp v − v
0 ps − 2v

0 paξ( ){ }δ v dξ
−1 2

1 2

∫⎡
⎣⎢

⎤
⎦⎥η=1 2

− β ny − kym v − v
0ms − 2v

0maξ( ){ }δ v dξ
−1 2

1 2

∫⎡
⎣⎢

⎤
⎦⎥η=−1 2

+ nxy δ v dη
−1 2

1 2

∫⎡⎣⎢
⎤
⎦⎥ξ=1 2

− nxy δ v dη
−1 2

1 2

∫⎡⎣⎢
⎤
⎦⎥ξ=−1 2

+ β nxy δudξ
−1 2

1 2

∫⎡
⎣⎢

⎤
⎦⎥η=1 2

− β nxy δudξ
−1 2

1 2

∫⎡
⎣⎢

⎤
⎦⎥η=−1 2

 (6) 

Then, substituting Eqs. (4) and (5) to Eq. (1a) and applying the Galerkin procedure, the equation of 
motion is reduced to ordinary differential equations in terms of   b̂  in multiple-degree-of-freedom 
system. Neglecting the time variant terms, static deflection due to the static lateral acceleration and 
the in-plane initial displacements is obtained. Next, the ordinary differential equation is transformed 
to the equation in terms of the dynamic variable 

  
�bj  which is measured from the static equilibrium 

position. Furthermore, the ordinary differential equations are transformed to the standard form in 
terms of normal coordinates ib  corresponding to the linear natural modes of vibration   

�ζ i  at the 
static equilibrium position of the shell-panel as follows. 

    M bi( ) = bi ,ττ +2ε iω ibi ,τ +ω i
2bi + Dijkbjbk

k
∑

j
∑ + Eijklbjbkbl

l
∑

k
∑

j
∑ − pdGi cosωτ = 0  i, j,k,l =1,2,3,..., I

c( )   (7) 

Dynamic responses are calculated with the harmonic balance method and the numerical integration. 
 
3. Results and Conclusion   Analysis is conducted for the square cylindrical shell panel (

 
β = 1 ) 

with the curvature 
 
α

x
= 4  in the ξ  direction without initial deflection (

  âmn = 0 ). The maximum 
half-wave number is taken as 3 in the coordinate function, and the lowest 6 modes are adopted for 
the calculation of dynamic response, i.e. 

  Ic
= 6 . In the following results, deflection is calculated at 

the position 
 
ξ = 0.1,  η = 0.1 , under the static load 

  ps
= 351 , and amplitude of periodic load 

  pd
= 500 . 

Damping ratio for the each mode is 
  ε i = 0.01 , and the spring constants of the elastic constraints are 

  
k

xm
= k

xp
= k

ym
= k

yp
= 0.01. The initial in-plane displacement is applied only in the ξ  direction. We 

consider two conditions as shown in Fig. 2 : (a) uniform compressive in-plane displacement 

  
u

0ms
= −u

0ps
= 5100  and (b) compressive displacement including asymmetric component 

  
u

0ms
= −u

0ps
= 5100  , 

  
−u

0ma
= u

0pa
= 5100  . 

    Figure 3 shows the characteristics of restoring force of the panels with and without asymmetric 
compression under a concentrated lateral force. The restoring force shows the characteristics of a 
softening-and-hardening spring. By the asymmetric component of in-plane displacement, the region 
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where the negative gradient appears in the curve enlarged at the compressive side, and shortened at 
the tensile side of the panel. The nodal lines of the natural vibration modes of the panel are also 
deformed by the asymmetric constraints, as shown in Table 1. 
    Figures 4 and 5 shows the results of nonlinear frequency response of the shell-panels with and 
without asymmetric constraints, respectively. The thick rigid lines denote the periodic response 
calculated with the harmonic balance method. Although the principal resonance of the (1,1) mode 
corresponds to the characteristics of a softening-and-hardening spring, those of the higher modes 
(3,1) and (1,3) correspond to a hardening spring. By applying the asymmetric constraints, the 
principal resonance of the lowest mode shows more complex figure, and the hardening feature of 
the principal resonance of the mode (1,3) increases. Furthermore, the principal resonance of the 
mode (1,2) appears when the asymmetric constraints are applied which cannot be observed in the 
panel with uniform constraints. 
    In Figs. 4 and 5, the symbol C(1,1;1/2) denotes chaotic response accompanied with dynamics 
snap-through generated from sub-harmonic response of 1/2 order of the lowest vibration mode 
obtained by numerical integration. Fig. 6 shows the chaotic response of the panel with asymmetric 
constraints. The Fourier spectrum has dominant peak at the half frequency of the excitation. The 
Poincaré projection shows scattered fractal figure. The maximum Lyapunov exponent of the 
response has positive value of 

 
λ

max
= 2.2 . Figs. 7(a) and (b) show the numerical results of Poincaré 

projection for each vibration mode of the panel with and without asymmetric constraints, 
respectively. Owing to the asymmetric constraints, contributions of asymmetric modes, such as 
(1,2) and (2,2), drastically increase.    
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Fig.1 Model of a shell-panel   (a)Uniform     (b)Asymmetric 
Fig.2 In-plane compression

Table 1 Natural frequency and vibration mode 

 Mode (m,n) (1,1) (2,1) (1,2) (2,2) (3,1) (1,3) 

Uniform 

compression 

u0ma=-u0pa=

0 

ωmn 26.9 46.4 56.9 69.2 88.1 106.0 

Modal pattern 

       

Asymmetric 

compression 

u0ma=-u0pa=

5100 

ωmn 27.0 45.2 57.0 69.9 85.9 106.0 

Modal pattern 

       

O 3

4

O 3

4

    a)Tensile side     b)Compressive side 
Fig.3 Characteristics of restoring force

Fig5. Frequency response curves  
with asymmetric compression 

Fig.4 Frequency response curves with 

uniform compression 
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       (a)Uniform        (b)Asymmetric 
Fig.7 Poincaré projection of each mode 

Fig.6 Chaotic response of the panel  
with asymmetric compression 
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The purpose of this paper is to present a Rayleigh-Ritz analysis to obtain the frequency parameters 

of a three-dimensional body in completely free condition and with constraints through the use of 

artificial springs. In the past, several researchers have presented vibration solutions of three-

dimensional bodies including the work by Leissa and Zhang [1], Liew et al [2-3], Zhou et al [4-5] 

and Nagino et al [6].The motivation for this work comes from the following drawbacks of the 

classical Rayleigh-Ritz method: a) the need to used different sets of admissible functions to model 

elements with different boundary conditions, b) a limitation in the number of admissible functions 

due to ill-conditioning, and c) the limitation to solve problems defined by domains with simple 

geometries. Thus a set of admissible functions that models the structure in free condition, converges 

fast to the “exact solution” with respect to the number of functions included in the solution and that 

allows the use of a large number of functions without causing ill-conditioning is ideal for this 

approach. The latter characteristic is very important to be able to add a large number of artificial 

springs (penalty parameters) that reduce the number of degrees of freedom. It is also worth noting 

that structures in free condition are easy to inter-connect using the penalty method. A set of 

admissible functions with the properties mentioned above can be built by a linear and a square term 

plus a cosine series. This set of functions model a beam in a completely free condition and this set 

has been used together with penalty parameters to solve vibration and buckling problems of beams, 

plates, shells, frames built by two or more beams, structures built by shells of different curvature and 

box-type structures built by plate elements. Some of these examples can be found in [7-8]. The error 

due to violation of constraints has also been investigated using pairs of penalty parameters of 

positive and negative magnitude representing artificial springs or artificial inertia [7]. 

Here we take a similar approach as the one in [1] to define the displacements u , v  and w  along the 

x , y  and z directions in the Rayleigh-Ritz analysis of a three dimensional element, but in this case 

the three-dimensional body of dimensions a , b  and h  is in completely free condition and its origin 

is located in one corner extending towards the positive directions of the x , y  and z axes. Thus the 

displacements are defined as: 

� � � � tzyxUtzyxu �sin,,,,, � , � � � � tzyxVtzyxv �sin,,,,, �  and � � � � tzyxWtzyxw �sin,,,,, �  

(1a,1b,1c) 

where �  is the circular frequency and t  is time and presenting the solution in non-dimensional form 

using non-dimensional coordinates of the three-dimensional body ax /��  and by /�6  and 

hz /�7 , 

� � � � � � � �7868�876� kji

I

i

J

j

K

k
ijkAU 999

� � �

�
1 1 1

,, , � � � � � � � �7868�876� nml

L

l

M

m

N

n
lmnBV 999

� � �

�
1 1 1

,,  and 
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� � � � � � � �7868�876� rqp

P

p

Q

q

R

r
pqrCW 999

� � �

�
1 1 1

,, ,       (2a,2b,2c) 

and using the same number of functions N  to simplify the solution 

RNKQMJPLIN ��������� ,  and  

� � � � 1�� i
i ��8    for 3 and 2,1,, �� plii , 

� � � ����8 3cos �� ii   for Nplii  ,5,4,, ��� ,     (3a,3b,3c) 

 

Similar equations are used in the other two non-dimensional coordinates. Carrying out the 

appropriate substitutions and minimizations of the terms defined in Eqs. (1-3) into the kinetic and 

strain energy terms of the three-dimensional body, (Eq. 6 and 7 in Leissa [1]), and into the strain 

energy of the artificial springs, (Eq. (33) in Nagino [6]), results in an eigenproblem. Three sets of 

results for frequency parameters of square ( 1/ �ba ) based three-dimensional bodies are presented. 

Tables 1 and 2 present results for bodies in free condition with height to side ratio 001.0/ �ah and 

5.0/ �ah , respectively. Table 3 presents results for a body with the four edges on the 0�z  in 

clamped conditions. Results are compared with those of previous publications.  Frequency 

parameters are defined as Dhb /2 ��: � , where �  is the density of the material and D  is the 

flexural rigidity of the plates )1(12/ 23 ;�� EhD . In all cases the values of the poisson ratio ;  was 

fixed to 0.3. 

 

Table 1. Frequency parameters of a rectangular three-dimensional element in completely free 

condition with height to side ratio 001.0/ �ah . 
 Frequency parameters  [rad/s] 

N  1 2 3 4 5 6 

4 14.194 22.504 30.564 41.501 41.568 80.601 

5 13.836 22.447 30.581 40.211 40.267 80.702 

6 13.597 21.955 29.374 38.271 38.284 75.356 

7 13.576 19.791 24.724 35.194 35.263 64.654 

8 13.516 19.680 24.459 34.924 34.930 63.470 

9 13.532 19.542 24.338 34.863 34.935 62.086 

10 13.495 19.682 24.251 34.870 34.936 61.455 

[7] 13.468 19.596 24.270 34.801 34.801 61.093 

 

The results in Table 1 for a free body similar to a thin plate do not converge monotonically 

increasing the number of degrees of freedom, but that is due to geometrical parameters. Table 2 

shows the results of a thick body in free condition with monotonic convergence as the value of N  is 

increased. Table 3 shows the frequency parameters of the body with clamped edges at the base and 

the value of N  fixed to ten. In this case, non-dimensional penalty parameters Ekak /�  

representing artificial springs (stiffness) were used to model all constraints, where k  is the rigidity 

of the translational spring. Results on Table 3 show the typical monotonic convergence from below 

as the value of the penalty parameter of stiffness type k  is increased. Results show that the set of 

admissible functions given in Eq. (3) can be used to model a three-dimensional body in free 

condition or constraint through the use of penalty parameters. More complex constraints and inter-

connection of elements can be also modeled using the penalty method. 
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Table 2. Frequency parameters of a rectangular three-dimensional element in completely free 

condition with height to side ratio 5.0/ �ah . 
 Frequency parameters  [rad/s] 

N  1 2 3 4 5 6 

4 8.835 13.342 16.299 16.658 18.029 18.029 

5 8.822 12.548 15.036 16.117 17.062 17.062 

6 8.787 12.523 14.973 16.080 17.041 17.041 

7 8.786 12.518 14.967 16.075 17.033 17.033 

8 8.782 12.516 14.964 16.074 17.032 17.032 

9 8.781 12.515 14.963 16.073 17.031 17.031 

10 8.781 12.515 14.962 16.073 17.030 17.030 

11 8.780 12.515 14.962 16.073 17.030 17.030 

[6] 8.780 12.515 14.961 16.072 17.030 17.030 

 

Table 3. Frequency parameters of a rectangular 3-D element with edges clamped at the base, 

5.0/ �ah , 10�N  and different values of non-dimensional penalty parameters  k  as defined in [6]. 
 Frequency parameters  [rad/s] 

k  1 2 3 4 5 6 

10
3
 15.278 24.060 24.060 24.773 24.773 29.344 

10
4
 15.313 24.094 24.094 24.835 24.835 29.375 

10
5
 15.316 24.098 24.098 24.841 24.841 29.379 

10
6
 15.317 24.098 24.098 24.841 24.841 29.379 

[6] 15.286 24.071 24.071 24.816 24.816 29.376 
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1. Introduction 
The vibration of plates with various attachments, such as spring, point mass and dashpot, has received 

considerable attention in the past literature, since such applications are found in many engineering structures. 

This technical trend is getting more obvious by the appearance of smart structures, where sensors and 

actuators are attached to the plate surfaces. The effect of the attachments has been studied on the vibration 

characteristics for cases of springs and masses, but very little has been done on the plates with long rigid 

attachments. 

The objective of this work is to analyze the free vibration of laminated composite rectangular plates with 

single or plural rigid bodies attached on the plate surface. The Ritz method is applied to the problem by 

introducing rotational inertia of the long rigid body in the energy formulation of the plate. The plate is 

assumed to be symmetrically laminated with respect to the mid-surface. An experiment is also conducted to 

make the comparison between the analytical and experimental results.  

A lay-up optimization problem is then solved by using a layerwise optimization method, and in numerical 

examples, the optimum lay-up designs are determined to make the maximum fundamental frequencies of the 

laminated plate-rigid body system. 

 

2. Analysis of laminated rectangular plate with rigid body 
Figure 1 shows a laminated composite rectangular plate of 

dimensions a×b with thickness h, having some bar-like rigid 

bodies (p=1,2,…,P). A Cartesian coordinate system o-xy is taken 

with its origin at the center of the plate. The direction of the 

fibers and the transverse direction to the fibers are denoted by L 

and T, respectively, and the fiber orientation angle between the 

axes is denoted by � . Each layer is considered to be 

macroscopically orthotropic. Symmetrically laminated plate with 

even numbers of layer is considered in the present work and the 

total number of layers is defined as 2N.           

The bending stiffness which relates the stress resultant to the plate curvature is given in the lamination 

theory. For small amplitude vibration, the strain and kinetic energies are written in terms of deflection w by      

6 7 6 7
11 12 16

12 22 26

16 26 66
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Fig.1 Laminated plate with symmetrically attached bars 
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where D’s are bending stiffness, mp, and Ix,p, Iy,p are translational and rotational inertia of the attached rigid 

bodies, respectively. Natural frequency is normalized as a frequency parameter $=%a2(�/D0)
1/2 with 

D0=ETh3/12(1-<LT<TL)1/2 where % is a radian frequency, > is the averaged mass per unit area and D0 is a 

reference bending stiffness.  

   After the displacement function is substituted into the functional composed of eqs.(1) and (2), the Ritz 

minimizing process is applied to yield a frequency equation. The frequency parameter for the fundamental 

(lowest) mode, denoted by $1, is used later as the object function and is maximized in the optimization. 

3. Lay-up optimization for the maximum fundamental frequency 

The objective function to be maximized is the fundamental frequency parameter $1, and the design 

variables are the fiber orientation angles �i  (i = 1, 2, … , N) where �1 is the angle in the outermost layer. To 

solve this optimization problem, the present paper employs the layerwise optimization (LO) scheme, and the 

LO method is based on the well known physical fact that the outer layer has a stronger stiffening effect than 

the inner layers and plays a larger role in the natural frequency of bending vibration. This suggests that the 

outer layer plays the decisive role in determining the maximum frequency of laminated plates. The 

effectiveness of the LO method was already shown in a number of papers by the present authors. 

� � �

Table 1 Comparison of the lowest four frequencies.  

(Aluminum plate WITHOUT rigid body) 

 1st 2nd 3rd 4th 

Ritz 56.62 186.9 350.8 633.8 

Measured 50.24 180.4 322.7 608.2 

(Aluminum plate WITH rigid body) 

 1st 2nd 3rd 4th 

Ritz 32.40 66.67 117.7 302.6 

Measured 29.92 64.86 110.8 305.7 

 

Fig. 2 Test specimen for the experiment. 

 

Mode Ritz Measured 

1st 

  

2nd 

  

3rd 

  

4th 

  

Fig. 3 The lowest four vibration mode shapes 

from the Ritz method and the experiment. 
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4. Comparison of analytical and experimental results    

As shown in Fig.2, an experiment is conducted to verify the validity of analytical modeling for aluminum 

cantilever plates with/without a rigid aluminum bar by using the modal analysis technique. The plate is set to 

stand vertically by a vise and has the free edge dimension of 120×80×0.95 mm except the part fixed by the 

vise. The rigid bar has the total length of 160 mm with a radius of 3.5 mm, and attached symmetrically to the 

plate. For measuring the natural frequencies and mode shapes, the plate is excited at many points by an impact 

hammer, and the acceleration is measured by the piezoelectric accelerometer.  

Table 1 presents the lowest four natural frequencies (Hz) obtained by the Ritz method and experiment for 

the plates with/without a rigid body. The difference of the Ritz and experimental results is between 3.5 and 

11.3 percent for a plate without a bar, and is between -1.0 and 7.7 percent for the plate with a bar, and no 

significant difference is found between the two plates. The Ritz method gives higher estimated frequencies 

than the experimental ones, except for the fourth mode of the plate with a bar, mainly due to the less perfect 

clamping that the vise would apply. 

Figure 3 illustrates the mode shapes of the plate with a bar, and the effect of the bar is observed when the 

mode shapes are compared with those of the plate without a bar. It is clearly seen from these results that the 

modeling and formulation of the problem are reasonably accurate for the present problem. 

For the lay-up optimization, Table 2 presents randomly chosen parameters for comparison with the 

optimum results of the symmetrically laminated eight-layer, cantilever plate with a rigid body. The plates are 

assumed to have the rigid body of length 2l, mass m and radius r, and the parameters are defined as ? = a/b�X 

= a/l�\ = a/r�^ = m/�abh with the non-dimensional location of the bar at `=2x/a and {=2y/b.  

In Table 3, the optimum solution is compared with the results of A, B, C and D cases for the lay-up design 

and the fundamental frequencies. Under the conditions listed in Table 2, the obtained optimum solutions are 

[5°/5°/50°/-35°]s, [0°/0°/0°/0°]s, [0°/0°/-5°/-5°]s, [0°/0°/0°/-5°]s in the upper (lower) layers. The optimum 

solutions obtained by the layerwise optimization are higher than the other results. It is concluded that the 

optimum fiber orientation angles are influenced by the present of the bar, while the optimum lay-up is always 

[0°/0°/0°/0°]s for the cantilever plates without bar, regardless of the aspect ratios.   References (omitted) 

Table 2 Selected parameters for the optimization problem. 

Case � � � � � 	 

A 0.5 1.0 30 1.0 0.5 0.5 

B 1.0 3.0 15 0.2 -0.3 0.4 

C 3.0 2.0 10 0.5 0.1 -0.2 

D 5.0 1.5 5 0.8 -0.8 -0.7 

 

Table 3 Obtained natural frequencies of the plates with optimum 

lay-ups and typical lay-ups for each case. 

Case A B C D 

Optimum 4.12 13.41  10.93 13.35 

[0°/0°/0°/0°]s 3.85 13.41  10.92 13.34 

[45°/-45°/45°/-45°]s 2.99 7.12  5.29 6.11 

[0°/90°/0°/90°]s 3.72 11.30  9.20 11.20 
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Abstract
Vibrations of Single-Walled Carbon Nanotubes for various boundary conditions are considered in 

the framework of the Sanders-Koiter thin shell theory. A double series expansion of displacement 

fields, based on the Chebyshev orthogonal polynomials and harmonic functions, is used to analyse 

numerically the natural frequencies of shells having free or clamped edges. A reduced form of the 

Sanders-Koiter theory is developed by assuming small circumferential and shear deformations; such 

approach allows to determine an analytical solution for the natural frequencies.

The numerical model is validated with the results of molecular dynamics and finite element analyses 

present in literature. The analytical model is validated by means of comparisons with the numerical 

approach. Nonlinear vibrations and energy distribution of carbon nanotubes are then considered.

Introduction
Carbon Nanotubes were discovered in 1991 by Iijima [1], who first analysed the synthesis of 

molecular carbon structures in the form of fullerenes and then reported the preparation of a new type 

of finite carbon structure consisting of needle-like tubes, the carbon nanotubes, described as helical 

microtubules of graphitic carbon.

Rao et al. [2] studied the vibrations of SWNTs by using Raman scattering experimental techniques 

with laser excitation wavelengths in the range of the nanometers. They observed numerous Raman 

peaks, which correspond to vibrational modes of the nanotubes.

Bandow et al. [3] analysed the effect of the temperature on the diameter distribution and chirality of 

SWNTs by comparing different experimental techniques, such as electron microscopy, X-ray 

diffraction and Raman spectroscopy. They studied the effect of the catalysts on the tube yield and 

the evolution of the tube distribution with increasing environment temperature.

Jorio et al. [4] studied the vibrations of SWNTs by resonant confocal micro-Raman spectroscopy. 

They developed a method to assign the carbon nanotube chirality uniquely by measuring one radial 

breathing mode frequency and applying the theory of resonant transitions.

Molecular dynamics (MD) simulations and finite element (FE) analyses provide good predictions of 

the mechanical behaviour of CNTs under external forces, with results close to the experiments.

However, such techniques are not suitable for considering nonlinear effects due to their very huge 

computational cost.

In this paper, a semi-analytical approach is proposed for the study of carbon nanotubes vibrations;

this method is computationally efficient, accurate and suitable for considering nonlinear effects. 

Theory
According to the Sanders-Koiter theory, the elastic strain energy U of a cylindrical shell, neglecting 

both the transverse normal stress 
z (plane stress hypothesis) and the transverse shear strains �xz, ���
(Kirchhoff’s hypothesis), as in the Love’s “first approximation”, is written in the form

� �
1 2 /2

0 0 /2

1

2

h

x x x x
h

U LR dzd d
4

� � � �� � � � , � � �
�

� � �5 5 5 (1)
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The kinetic energy T of a cylindrical shell (rotary inertia effect is neglected) is given by 

� �
1 2

2 2 2

0 0

1

2
T hLR u v w d d

4

9 � �� � �5 5 � � � (2)

Here, the three displacement fields (u, v, w) are nondimensionalized by means of the radius R of the 

carbon nanotube u Ru� � , v Rv� � , w Rw� � . A nondimensional time � is considered by introducing a 

reference natural frequency �0 in the following form 1

0t � ,�� , � �2 20 1

E
R- 9

�
�

� .

The problem is analysed by means of an approach based on a double series expansion in terms of 

harmonic functions and polynomials followed by the application of the Rayleigh-Ritz procedure.

Once the linear analysis is carried out, the displacement fields are re-expanded by means of 

approximate eigenfunctions; using the Lagrange equations and the potential energy with nonlinear 

terms, a set of nonlinear ordinary differential equations is obtained and solved numerically.

Numerical results
First of all the model is validated with experimental data present in literature [4]; the results reported

in Table 1 show that the model is sufficiently accurate.

Table 1. Natural frequencies of the radial breathing mode (m = 0, n = 0): comparisons between

the extended Sanders-Koiter theory (ESKT) and the Resonant Raman Spectroscopy (RRS).

In order to analyse the discrete molecular carbon nanotubes as continuum thin shells, equivalent 

mechanical parameters (Young’s modulus, Poisson’s ratio, mass density, wall thickness) must be 

considered. These parameters are not dependent from the CNT diameter (no size effect). The carbon 

nanotube described in Table 2 is considered for the following computations.

Effective thickness h0 (nm) 0.10 ÷ 0.15 
Equivalent thickness h (nm) 0.066 

Effective Young’s modulus E0 (TPa) 1.0 ÷ 2.0 
Equivalent Young’s modulus E (TPa) 5.5 

Effective Poisson’s ratio �0 0.12 ÷ 0.28 
Equivalent Poisson’s ratio � 0.19 

Surface density of graphite � (kg/m2) 7.718 × 10-7 
Equivalent mass density � (kg/m3) 11700 

Table 2. Effective and equivalent parameters of the Single-Walled Carbon Nanotube.

In Figure 1 the first three mode shapes of a free-free carbon nanotube are presented, such modes are 

then considered for the development of the semi-analytic nonlinear model of the nanotube in the re-

expansion procedure. In Figure 2 the total vibration energy distribution is represented, the nanotube 

is unwrapped on a plane in order to allow the representation. The sequence of Figures 2(a-d) shows

the development of the total energy density [Jm
-2

] during a time period corresponding to the natural 

frequency of the fundamental mode; clearly, due to the presence of the nonlinearity, one can observe 

the absence of periodicity. It is to note that the damping is not considered here, so the total energy 

Natural frequency (THz) Difference %

(r, s) ESKT – Present model RRS – Ref. [4]

(8, 7) 6.905 7.165 3.63

(10, 5) 6.785 7.105 4.50

(11, 4) 6.669 6.865 2.85

(14, 1) 6.177 6.295 1.87

(18, 0) 5.025 5.276 4.76
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should be constant (the integral of the density over the surface); a specific check is carried out, the 

results are omitted for the sake of brevity.

The analysis of the energy distribution over the shell shows a periodicity along the circumferential 

direction. This is partially expected as in the present preliminary analysis no conjugate modes are 

present. The energy is initially distributed non symmetrically in the axial direction, see Figure 2a,

indeed here we are combining a symmetric mode (0,2) and an asymmetric mode (1,2). Then, such 

initial distribution is destroyed due to nonlinearity and the energy evolves in a mode more complex 

pattern, see Figures 2(b-e).

Figure 1. Mode shapes of the vibration modes (j, n). (a) Mode (0, 2). (b) Mode (1, 2). (c) Mode (2, 2).

(a) (b) (c)

                                            (d)                                                         (e)

Figure 2. Contour plots of the total energy distribution 
 (�, �, �). Combination of the vibration modes (0, 2) and (1, 2).

(a) Time � = 0. (b) Time � = 1/4. (c) Time � = 1/2. (d) Time � = 3/4. (e) Time � = 1.
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INTRODUCTION
Foreign objects entering aircraft engines are a perennial problem. Mathematical analysis 

and computer simulations can provide information on component stresses already in the 

design phase.

Foreign objects (e.g. a bird) were characterized as a water-like hydrodynamic response by 

Wilbeck and Rand [1] in their tests. Storace et al. [2] developed a computer program to 

predict structural response due to soft body impact. Heidari, Carlson and Yantis [3]

developed rotor dynamics as a nonlinear transient analysis for a propulsion system during 

bird strike induced fan blade loss. Experiments were carried out on SO-3 compressor first 

stage rotor blades [4] to initiate a crack by placing rectangular blocks on the stator blades, 

simulating birds engulfed in the engine.

The Fluent code was used to analyze the low frequency excitation caused by inlet 

blockage of 1.5 stages of an SO-3 engine, but it did not take into account rotor blade 

~���	��
����	��
�
������	���������
���
������	����]. Aeroeleastic behaviour of rotor blade 1.5 

first compressor stage was analyzed by Rzadkowski et al. [7].

In this paper the unsteady forces acting on rotor blades will be calculated for a 3D non-

viscous ideal gas flow through 2.5 compressor stages using an in-house code and taking into

account rotor blade vibration.

AERODYNAMICAL MODEL
Blade failures in the first stage of SO-3 compressors were reported in the years 1975-1991 

[4]. Experiments were carried out on a first stage rotor blade in an SO-3 engine compressor at 

the Air Force Institute of Technology in Warsaw to initiate a crack by placing rectangular 

blocks on the stator blades, which in real life could be caused by birds engulfed in the engine.

The 3D transonic flow of an inviscid non-heat conductive gas through the first compressor 

stages of an SO-3 aircraft engine was simulated.

In order to model the engine inlet bird strike, four stator blade passages were blocked. 

Each of the passages is meshed, using an H-type grid for the stators domain and a hybrid H-H

grid for the rotor domain ([8], [9], [10]). Here the outer H-grid of the rotor remains stationary 

during the calculation, while the inner H-grid is rebuilt in each iteration by a given algorithm, 

so that the external points of the inner grid remain unmoved, but the internal points (on the 

blade surface) move  according to the blade motion. Mesh dependency concerning the fluid-

flow and mesh size was analysed in [9], [10].
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The spatial transonic flow, including in the general case strong discontinuities in the form 

of shock waves and wakes behind the exit edges of blades is written in the relative Cartesian 

coordinate system rotating with constant angular velocity � according to full non-stationary 

Euler equations, presented in the form of integral conservation laws of mass, impulse and 

energy [8], [9]. Wakes were not simulated.

In the general case, when axial velocity is subsonic, at the inlet boundary initial values for

total pressure, total temperature and flow angles are used, while at the outlet boundary only 

the static pressure has to be imposed. Non-reflecting boundary conditions must be used, i.e., 

incoming waves (three at the inlet, one at the outlet) have to be suppressed, which is 

accomplished by setting their time derivative to zero [9], [10].

On the blade's surface, because the grid moves with the blade, the normal relative velocity 

is set to zero.

STRUCTURAL MODEL
The blade vibration formulation is based on a modal approach of the coupled problem 

([11], [12]). The first step of the modal approach consists of solving the problem of the 

natural mode shapes and eigenvalues without damping and in a vacuum. Then the 

displacement of each blade can be written as a linear combination of the first N mode shapes 

with the modal coefficients depending on time.

NUMERICAL RESULTS
The numerical calculations were carried out for the two and half stages of the SO-3 engine 

compressor.

The blade vibration was defined by taking into account the first five natural mode shapes 

of the rotating R1 and R2 blades. Mechanical damping was not taken into consideration,

because we did not have experimental values. Aerodynamical damping was part of the 

calculation process [10].

The calculation included two regimes. In the first regime the calculations of the unsteady 

flow through the turbine stage were made by first taking into account the rotor rotation 

without blade vibration. Next the blades vibration began.

In the numerical model R1 and R2 rotor blade vibrations were taken into consideration, 

hence an aeroelastic analysis was possible.

A comparison between the vibration of rotor blades with and without a blocked inlet is

discussed.

CONCLUSIONS
This paper has presented the calculation results for unsteady low-frequency aerodynamic 

forces acting on SO-3 jet engine compressor R1 and R2 blades, which took into account blade 

vibration. The forces were analyzed in two operating conditions: with an unblocked and 

partially blocked engine inlet. The obtained results show that disturbances in the engine inlet 

strongly influence the level of unsteady forces acting on the rotor blades. With a partially 

blocked inlet the whole spectrum of low-frequency harmonics was observed, including the 

natural frequency of blades.

The vibration amplitudes of rotor blades with a blocked inlet are considerably higher than 

in the case of an unblocked inlet. In this case R1 and R2 blade vibrations differ from their first 

mode shape and include torsional components.  
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ABSTRACT 

An accurate determination of the modal parameters is required for the technical design of structural 

shell elements. In this study, the free vibrations of laminated doubly-curved shells are investigated. 

There are three different ways to study anisotropic shell structures: the 3D Elasticity [1-3], Equivalent-

Single-Layer (ESL) [1-3] and Layer-Wise (LW) [3,4] theories. The mechanical model proposed in this 

study, for the two ESL and LW approaches, is based on the Carrera’s Unified Formulation (CUF) [4]. 

The investigated kinematic models are presented in the following: 
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The LD4 model of the expressions (1) refers to a fourth order Layer-Wise approach in terms of 

displacements (LD4), where the generalized displacements � � � � � �
, ,

k k k
ib it iu u u, , ,

 are defined at the k -th layer 

level and the thickness functions 1 2 3, , , ,b tF F F F F  are assumed as Legendre polynomials [4]. The other 

three model EDZ4, ED4 and FSDT can be classified as fourth order Equivalent Single Layer models 

in terms of displacements with (EDZ4) or without (ED4) the zig-zag effect (Z). In particular, the last 

one of the expressions (1) is the well-known First-order Shear Deformation Theory (FSDT). The 

curvature effect is included in the formulation of the constitutive equations. The fundamental 

operators, concerning a laminated composite doubly-curved shell in orthogonal curvilinear coordinate 

system, are obtained for the first time by the authors. Using the Differential Geometry [1,2] to 

completely describe the doubly-curved shell, the Differential Quadrature (DQ) [5] rule leads to 

numerically evaluate all the derivatives involved in the numerical calculations. The governing 

equations are expressed as functions of various kinematic parameters, when the constitutive and the 

kinematic relationships are used [6-11]. The system of second-order linear partial differential 

64



 

 2

equations is solved considering the Generalized Differential Quadrature (GDQ) method [5]. In order to 

verify the formulation accuracy, the worked out results are compared with the ones obtained using 

analytical and numerical solutions. Tables 1, 2 and 3 show the first five natural frequencies for six 

different types of shell structures. Some mode shapes of the considered shell structures are illustrated 

in Figure 1. Various boundary conditions and general lamination schemes are investigated. 

 

Mode 

[Hz] 

EDZ4 

GDQ 

3D  

FEM 
%

100
GDQ FEMf f

e
f

�
� ;

 EDZ4 

GDQ 

3D 

FEM 
%

100
GDQ FEMf f

e
f

�
� ;

 EDZ4 

GDQ 

3D 

FEM 
%

100
GDQ FEMf f

e
f

�
� ;

 

Shell 

Structure 

C-C-C-C (30/70/45) 

Hyperbolic Paraboloid 

C-C-C-C (30/70/45) 

Elliptic Paraboloid 

C-C-F-F (Isotropic)  

Parabolic Degenerate Plate 

1
f

 
193.14 193.18 0.0194 209.59 209.56 0.0125 30.30 30.37 0.2401 

2
f

 
194.70 194.64 0.0327 214.37 214.34 0.0144 101.52 101.50 0.0240 

3
f

 
215.35 215.31 0.0193 231.88 231.79 0.0390 136.82 136.79 0.0189 

4
f

 
238.53 238.41 0.0523 276.06 275.95 0.0393 236.50 236.51 0.0043 

5
f

 
292.38 292.24 0.0487 305.78 305.63 0.0496 277.51 277.53 0.0054 

 

Table 1. First ten frequencies for three different shell and panel structures. 
 

Mode 

[Hz] 

EDZ4 

GDQ 

3D  

FEM 
%

100
GDQ FEMf f

e
f

�
� ;

 EDZ4 

GDQ 

3D 

FEM 
%

100
GDQ FEMf f

e
f

�
� ;

 EDZ4 

GDQ 

3D 

FEM 
%

100
GDQ FEMf f

e
f

�
� ;

 

Shell 

Structure 

C-C-C-C (30/45)  

Catenoidal Panel 

C-C-C-C (Isotropic) Curved Cylindrical 

Panel (Elliptic Curve on Catenary Curve) 

F-C-F-F (Isotropic) 

Bi-polar Degenerate Plate with Variable 

Thickness 

1
f

 
385.52 385.32 0.0529 382.60 382.76 0.0412 26.06 25.97 0.3640 

2
f

 
437.77 437.28 0.1113 452.15 452.31 0.0346 42.20 42.27 0.1637 

3
f

 
485.73 485.43 0.0615 558.19 558.36 0.0308 62.82 62.28 0.8724 

4
f

 
574.36 573.56 0.1390 687.02 687.23 0.0298 79.20 79.40 0.2501 

5
f

 
640.12 639.50 0.0968 741.24 741.28 0.0051 121.47 121.70 0.1903 

 

Table 2. First ten frequencies for three different shell and panel structures.  
 

Mode 

[Hz] 

FSDT 

GDQ 

ED4  

GDQ 

EDZ4  

GDQ 

LD4 

GDQ 

3D 

FEM 

FSDT 

%
100

GDQ FEMf f
e

f

�
� ;

 

ED4 

%
100

GDQ FEMf f
e

f

�
� ;

 

EDZ4 

%
100

GDQ FEMf f
e

f

�
� ;

 

LD4 

%
100

GDQ FEMf f
e

f

�
� ;

 

1
f

 
380.90 385.52 385.67 385.30 385.32 1.1470 0.0530 0.0896 0.0041 

2
f

 
431.13 437.77 437.90 437.19 437.28 1.4058 0.1119 0.1426 0.0208 

3
f

 
478.34 485.73 485.83 485.36 485.43 1.4596 0.0618 0.0815 0.0145 

4
f

 
563.46 574.36 574.44 573.48 573.56 1.7612 0.1392 0.1540 0.0145 

5
f

 
628.23 640.12 640.28 639.27 639.50 1.7618 0.0974 0.1216 0.0356 

 

Table 3. First ten frequencies for C-C-C-C (30/45) catenoidal panel. 
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Hyperbolic Paraboloid 

 
Elliptic Paraboloid

 
Parabolic Degenerate Plate

 
Catenoidal Panel 

 

 
Curved Cylindrical Panel  

(elliptic curve on catenary curve) Bi-polar Degenerate Plate with 

Variable Thickness  
Figure 1. Different mode shapes for various shell structures. 
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Introduction. The aim of the present study is the development of a model for the prediction of the 

high-frequency pile-soil-water dynamics induced by offshore pile driving. The ground motion and the 

generated sound field due to pile driving depends on the source parameters (driving method, input 

energy of the hydraulic hammer etc.), the soil-fluid-pile interaction and the propagation of waves in 

the surrounding media. Steel monopiles are nowadays widely used as foundation of offshore wind 

turbines and are driven into place with the help of hydraulic hammers as shown in Fig.1. The 

installation process is accompanied with high sound pressures in the surrounding fluid which are 

considered to be harmful for the marine ecosystem. In this study, a linear semi-analytical formulation 

of the coupled vibro-acoustic problem of the complete system is addressed. The model is similar to, 

but significantly more advanced than, the one presented by the authors in [1]. The advance is 

associated with a three-dimensional description of the soil adopted in the new model. The pile is 

described by a thin shell theory whereas both fluid and soil are treated as three-dimensional continua. 

Fluid is assumed to be present only at the exterior of the pile. 
 

 

Fig.1 Geometry of the model and definition of the adopted coordinate system 

The solution of the system of coupled partial differential equations is based on the dynamic sub-

structuring technique according to which the total system is divided into two sub-systems: the shell 

structure and the soil-fluid layered medium. The linearity of the model allows for the representation of 

the response of each subsystem in the form of a superposition over appropriate eigenfunctions. The 

completeness of the modal sum for the layered soil-fluid domain is guaranteed by the introduction of 

a rigid boundary at a certain depth as shown in Fig.1.  

 

Model description. The pile is described by an appropriate thin shell theory which includes the 

effects of shear deformation and rotational inertia [2]. The governing equation describing the shell 

vibrations in the time domain reads: 

� � � � � � � � � � � � � � � �2 1 2, , , , , , , , , , , , .z t z t H z z R z t H z z H z z R z t z t� � � �� � � � � 	 � � � 
 �� 
p m p s f eLu I u � p f �

�

                (1) 

 

In the equation above, � tz ,,�pu  is the displacement vector of the mid-surface of the shell. The terms 

 and  are the stiffness and modified inertia matrix operators of the shell, respectively, which are 

based on the applied thin shell theory. Material dissipation is accounted for by means of a frequency 

independent complex-valued elasticity modulus of the steel in the frequency domain. The term 

L mI

� tzR ,,, ��s�  represents the boundary traction vector that takes into account the reaction of the soil 
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surrounding the shell at . The term Lzz ��2 � �tzR ,,,�fp  represents the fluid pressure exerted at the 

outer surface of the shell at . The functions 
21 zzz �� � �izzH �  are the Heaviside step functions which 

are used here to account for the fact that the soil and the fluid are in contact with different segments of 

the shell.  

The fluid is treated as a three-dimensional inviscid compressible medium with a pressure release 

boundary describing the sea surface. The motion of the fluid is fully characterized by a velocity 

potential � � �tzrf ,,,�� : 

� � � �
0

,,,1
,,,

2

2

2

2 �
8

8
�<

t
tzr

c
tzr f

f
f

��
��             (2) 

where�  is the sound speed in the exterior fluid domain. The soil is described as a three-dimensional 

perfectly elastic continuum able to support both dilatational and shear waves and is terminated at a 

certain depth with a rigid boundary. The body waves generated at the pile tip are not accounted for in 

the framework of this model. These waves are not expected to contribute to the acoustic field 

significantly since they will mainly consist of shear and compressional body waves with a spherical 

front spreading outwards and thus they will experience large attenuation [3] at the frequency range of 

interest. The motion of the soil medium is described by the following set of linear equations: 

fc

2

2
2 )(

tssss 8
8
;�;<<;��<;

uuu 9���              (3) 

* +)21()1(/ sssss vvvE �;���  and )1(2/ sss vE ; ���  being the Lamè constants for the soil. The constants 

 and  correspond to the Young’s modulus and the density of the soil respectively. The solution 

for the soil domain can be found using the Lamb’s decomposition and introduction of potentials. The 

response of the coupled system is sought for in the form of a modal expansion with respect to the in
vacuo shell modes and to those of the soil-fluid domain. The analytical approach is based on the 

following steps: i) solution of the eigenvalue problem of the shell without the presence of the fluid 

and the soil; ii) solution of the eigenvalue problem of the soil-fluid domain; iii) solution of the 

coupled system of equations resulting from the substitution of the obtained solutions for the shell and 

the soil-fluid domains into the interface conditions. For the shell in vacuo the response can be 

represented as follows: 

sE sv

� � � � � �, ,

0 1

, , cos exp i t ,
2

j p nm jnm p j mn
n m

u z t A U z n�
4� = �

( (

� �

3 0� �1 .
2 /

)) >                (4) 

where  is the circumferential order and (� ,..,2,1,0n (� ,..,2,1m  is the axial order. The functions 

 with � �zU pjnm, rzj ,,��  describe the axial distribution for the axial, circumferential and radial 

displacement fields respectively.  are the undetermined shell modal factors. For the exterior soil-

fluid domain the response can be represented as: 

nmA

� � � � � �
� � � � � �, ; , ;

0 1

cos
, , , exp i t .

sin
j s f nk jnk s f nk

n k

n
u r z t C U z R r

n
�

� �
�

( (

� �

& #  � % "
  $ !

))                    (5) 

The subscripts s and  refer to the soil and fluid respectively. The eigenfunctions  along the 

vertical coordinate are obtained by satisfying the set of boundary and interface conditions at 

f � �zU fsjnk ;,

qzz �  

with  corresponding to the different layers. The index k is used here to reflect the different 

modes along the vertical coordinate. In accordance with Fig.1, the following set of boundary and 

interface conditions is imposed. At  the fluid pressure is set equal to zero. At  the normal 

stress and displacement are continuous whereas the shear stress of the soil is set equal to zero 

(inviscid fluid). Finally, at 

lq ,...,2,1�

1zz � 2zz �

Lz �  the displacements of the soil are set equal to zero. The functions 

 correspond to the Hankel functions of the second type and of different order depending on the 

circumferential index n, which appropriately describe the radial dependence of the field. By enforcing 

force equilibrium and displacement compatibility at the interface between the shell and the exterior 

� �rRnk
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domain, the original system of coupled partial differential equations is reduced to a system of coupled 

algebraic equations which can be solved with high accuracy. To achieve this, the orthogonality 

condition for the shell structure in vacuo and the one of the exterior soil-fluid domain are used to 

relate the unknown sets of modal coefficients ( , ) and to solve the coupled problem. nmA nkC

Numerical Results. In this section some preliminary results are presented for a pile with length 

L=32.4 m, diameter D=0.92 m and thickness t=0.02 m. The material parameters of the pile are Ep=2.1 

105 Mpa, vp=0.28 and >p=7850 kg m-3. The soil consists of a single layer with  Es=100 Mpa ,  vs=0.40 

and >s=1600 kg m-3 in the case of a soft soil and  Es=500 Mpa ,  vs=0.40 and >s=1800 kg m-3 in the case 

of a stiff soil. The water is modelled as an inviscid fluid with  cf=1500 ms-1 and >f=1000 kg m-3. In 

accordance with Fig.1, z1=6 m and z2=13.2 m. The external load corresponds to a hammer input 

energy of 90 kJ. The maximum force amplitude equals 12 MN and the duration of the main pulse is 

equal to 5 ms. In Fig.2, the generated wave field is shown for the (outer to the shell) soil-fluid domain.  
�

�

�

�

�

�

�

�

�

�

�

 
Fig. 1.2 Pressures in the fluid (top) and vertical displacements in the soil (bottom) for successive time moments after 

the impact in the case of a soft soil (left) and a stiff soil (right). In both figures from left to right: t=4ms; t=6ms; 

t=10ms; t=15ms; t=25ms after the impact of the hammer. 

As can be seen, the response in the fluid region is dominated by pressure Mach cones due to the 

supersonic compressional waves in the pile generated by the impact hammer. These cones are formed 

with an angle of about � � � � 011 175000/1500sin/sin  to the vertical. The soil response is 

dominated by shear waves with almost vertical polarization. Scholte waves are generated at the soil-

fluid interface. These waves propagate with a velocity slightly lower than that of the shear waves in 

the soil and their energy is localized in a restricted zone close to the interface. The penetration depth 

of the Scholte waves into the soil depends on soil elasticity. For stiffer soils, a larger portion of the 

input energy is localized in the fluid.  
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Damping Effects on Stabilizing Rotating Non-Circular

Shafts Subjected to Pulsating Axial Force
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Kaiserstraße 10, 76131 Karlsruhe, Germany

Introduction Well-known and extensively discussed is the instability of parametrically excited me-
chanical systems, see [1], for instance. In 1998 when Tondtl found out [2] that a specific parametric
excitation can also stabilize an otherwise unstable system, this stabilizing effect attracted more and
more attention, see [3,4,5], for instance. Also for rotating systems, this stabilization phenomenon has
recently been examined [6,7,8]. From earlier work in rotor dynamics it is well-known that damping
can significantly influence the stability of rotors, in particular internal damping which for rotating
systems is much more important [9,10]. Therefore, also for stabilizing rotating non-circular shafts by
pulsating force, the study of damping effects seems to be very important which was not sufficiently
discussed within the work [6,7,8] established. The present contribution aims on this particular aspect.

Problem Description Considering a rotating (Ω) non-circular Bernoulli–Euler shaft (mass per unit
length �A, bending stiffnesses EIu,v), simply supported on both ends, subjected to an axial time-
dependent load F (t) and including external (de) and internal (di) damping, the governing boundary
value problem reads (see [11], for instance)

�A
(
ü − 2Ωv̇ − Ω2u

)
+ de�A (u̇ − Ωv) + EIu (u,xxxx + diu̇,xxxx) − F (t)u,xx = 0 (1)

�A
(
v̈ + 2Ωu̇ − Ω2u

)
+ de�A (v̇ + Ωu) + EIv (v,xxxx + div̇,xxxx) − F (t)v,xx = 0 (2)

BCs.: u(0) = 0, u(L) = 0, u,xx(0) = 0, u,xx(L) = 0, v(0) = 0, v(L) = 0, v,xx(0) = 0, v,xx(L) = 0, (3)

where u = u(x, t) and v = v(x, t) are the displacements of the shaft’s neutral fibre measured with
respect to a rotating reference frame and (),x = ∂()/∂x and (),t = ∂()/∂t. The scaling of variables
ξ = x/L, τ = Ω0t, U = u/L, and V = v/L yields dimensionless parameters

EI0 = (EIu + EIv)/2 , μ =
EIu − EIv

EI0
, f =

FL2

EI0
, Ω0 =

EI0

L4�A
, d̄i = diΩ0 , d̄e =

de

Ω0
(4)

and the dimensionless boundary value problem
(

U
V

)′′
+

[
d̄e + d̄i(1 + μ) ∂4

∂ξ4 −2η

+2η d̄e + d̄i(1 − μ) ∂4

∂ξ4

](
U
V

)′ ∣∣∣ ()′ = ∂()/∂τ. (5)

+

[
(1 + μ) ∂4

∂ξ4 − η2 − f(t) ∂2

∂ξ2 −ηd̄e

+ηd̄e (1 − μ) ∂4

∂ξ4 − η2 − f(t) ∂2

∂ξ2

](
U
V

)
=

(
0
0

)
+ BCs.

Evaluation Using the series expansion

U =
N∑

i=1

√
2 sin (kπξ) , V =

N∑
j=1

√
2 sin (kπξ) (6)

which fulfills all boundary conditions, yields a system of 2N coupled ordinary differential equations

Mq′′ + (D + G)q′ + (K + K̃f(τ) + N)q = 0 (7)
∗joerg.wauer@kit.edu
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a) b) c)

Figure 1: Steady state stability (N = 1): a) Non-symmetric stiffness. b) Damping. c) Critical speeds.

where the matrix elements can easily be computed for each desired finite N–term truncation. For the
following, a harmonic axial force f(τ) = cos ητ is considered where the condition

(
K + K̃ cos ητ

)
> 0

for π4(1− |μ|)− η2 −π2f̂ > 0 or f̂ < π2(1− |μ|)− η2

π2 should be fulfilled to avoid buckling (quasistatic
f). The stability behavior for such systems with harmonic force can be studied using Floquet theory
where the simpler case of constant or missing force can be decided applying the Hurwitz criteria. The
lowest N = 1–term approximation

M =
[
1 0
0 1

]
, D =

[
d̄e + d̄iπ

4(1 + μ) 0
0 d̄e + d̄iπ

4(1 − μ)

]
, G =

[
0 −2η

+2η 0

]
, (8)

K =
[
π4(1 + μ) − η2 0

0 π4(1 − μ) − η2

]
, K̃ =

[−π2 0
0 −π2

]
, N =

[
0 −ηd̄e

+ηd̄e 0

]
(9)

corresponds with a non-circular Jeffcott rotor to primarily be discussed within this contribution.
Results The starting point is the stability of the trivial solution U, V = 0 for the non–circular rotor
without axial force. Destabilization due to non-symmetric bending stiffness occurs in an interval of
critical speeds, which for d̄i = 0, d̄e = 0 reads

ηcrit,S ∈ η01[
√

1 − μ,
√

1 + μ] (10)

where η01 = π2 is the first critical speed of the symmetric rotor (μ = 0). For non-vanishing damping
this is still a conservative approximation (see Fig. 1 a). Well–known is the stabilizing effect of external
damping and the destabilization due to inner damping which occurs if a critical speed is trespassed.
Using Hurwitz’ criteria, this stability threshold is found as

ηcrit,D ≈ η01

(
1 +

1
π4

(
d̄e

d̄i

)
+

1
2π8

(
d̄e

d̄i

)2

− 1
2
μ2

)
+ . . . for

d̄e

d̄i
� π4. (11)

Next – via Floquet theory – we investigate the stability of the trivial solution for the rotor with har-
monic axial force (frequency ηP , intensity f): first without internal damping (see Fig. 2) and then
also accounting for internal damping (see Fig. 3). It is obvious that beside the well-known areas of
parametric destabilization (near ηP /η01 ≈ 1/p, p = 1, 2, . . . ) there also appear small areas where the
harmonic axial force stabilizes parameter combinations which would be unstable without axial force.
However, it is also found that this effect of parametric stabilization strongly interacts with the effect
of internal damping: on the one hand, there are parameter regions where the varying axial force
intensifies the destabilizing effect of internal damping – on the other hand, the axial force can also
neutralize destabilization due to internal damping for some parameter combinations.
For the more general case of a N = 2–term approximation, there are 4 coupled ordinary differential
equations. Similar results as before are obtained: Instead of one pair of critical speeds with one un-
stable band between, there are now two pairs of critical speeds with an unstable area between each of
them. External damping is stabilizing once again and internal damping is destabilizing as explained
for a similar system within the paper [9]. For a pulsating axial force, there is a more complex stability
behavior than for the N = 1–truncation. Details will be shown during the symposium.
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a) b) c)

Figure 2: Steady state stability of a rotor without internal damping (d̄i = 0, d̄e = 1 · 10−3, N = 1). Gray areas
indicate unstable parameter combinations, dashed lines are stability borders for vanishing axial force.

a) b) c)

Figure 3: Steady state stability of a rotor with internal damping (d̄i = 5 · 10−4, d̄e = 5 · 10−3, N = 1). Gray
areas indicate unstable parameter combinations, dashed lines are stability borders for vanishing axial force.

Conclusion As expected, pulsating axial forces on rotating shafts provoke typical parametric in-
stabilities near parameter frequencies of ηP /η01 ≈ 1/p (p = 1, 2, . . . ). As a surprising result, both
destabilizing effects may neutralize each other if this parametric excitation interacts with other insta-
bilies – e.g. due to non-symmetric bending stiffness or internal damping. Thus, pulsating axial forces
may also have a stabilizing effect. However, it has been shown within this contribution that internal
damping strongly interacts with this effect, narrows the areas of stabilization and may even destroy
the beneficial influence of the axial force. As an outlook it would be interesting to investigate also
forced vibrations due to unbalance and to extend the shaft model in the sense of a Rayleigh or a
Timoshenko shaft.
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1. Introduction
Parametric instability in a system is caused by periodically varying coefficients in its governing 

differential equations. While parametric excitation of lumped-parameter systems has been extensively studied, 

that of distributed-parameter systems has been traditionally analyzed by applying Floquet theory to their 

spatially discretized equations. In this work, parametric instability regions of a second-order non-dispersive 

distributed structural system, which consists of a translating string with a constant tension and a sinusoidally 

varying velocity, and two boundaries that axially move with a sinusoidal velocity relative to the string, are 

obtained using the wave solution and the fixed point theory without spatially discretizing the governing 

partial differential equation. Unlike parametric instability regions of lumped-parameter systems that are 

classified as principal, secondary, and combination instability regions, the parametric instability regions of 

distributed structural systems considered here are classified as period-1 and period-i (i >1) instability regions.

Unlike parametric instability in a lumped-parameter system that is characterized by an unbounded 

displacement, the parametric instability phenomenon discovered here is characterized by a bounded

displacement and an unbounded vibratory energy, due to formation of infinitely compressed shock-like 

waves.

2. Parametric Instability for the Linear Model
The non-dimensional equation that governs the free transverse vibration of the translating string (Fig. 1) is

� � � � � � � � � � � � � �2, 2 , 1 , , 0tt xt xx xu x t v t u x t v t u x t v t u x t	 
� � � � �� 
 � , � � � �l rx t x x t' ' ,                (1)

where x is the spatial position, t is time, � �,u x t is the transverse displacement at position x at time t , the 

subscripts denote partial differentiation, the overdot denotes time differentiation, � � � �0 1 sinv t v v t�� � ,

� � � �21 1cos 1rx t v t� � �� � � � , and � � � �22 2coslx t v t� � �� � � . The translating string has homogeneous

boundary conditions and arbitrary initial conditions. Note that the velocities of the right and left boundaries 

are � � � �21 1sinrv t v t� �� � and � � � �22 2sinlv t v t� �� � ,

respectively. Also note that the translation velocities of 

the string relative to the two boundaries are assumed to 

be subcritical, i.e., � � � � 1rv t v t� ' and � � � � 1lv t v t� '
.

The non-dimensional energy density associated 

with the transverse vibration of the translating string at 

the spatial position x at time t is [1]

� � � � � � � � � �2 21 1
, , , ,

2 2
t x xx t u x t v t u x t u x t� � 	 � 
 �� 
 , (2)

where the first and second terms on the right-hand side are the kinetic and potential energies associated with 

the transverse vibration of the string. A control volume at time t is defined as the spatial domain 

� � � �6 7| ,l rx x x t x t@	 
� 
 . The vibratory energy of the translating string in the control volume is

� � � �
� �

� �
,

r

l

x t

cv x t
E t x t dx�� 5 .                                                         (3)

Fig. 1 Schematic of the translating string model
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It can be shown following Ref. [2] that the slope ratio of the reflected wave to the incident wave at the right 

and the left boundaries at time t are � �
� � � �
� � � �

1

1

r
r

r

v t v t
t

v t v t
�

� 	 � 
� 
�
� 	 � 
� 


and � �
� � � �
� � � �

1

1

l
l

l

v t v t
t

v t v t
�

� 	 � 
� 
�
� 	 � 
� 


, respectively. If 

the slope of the reflected wave from the right (left) boundary is larger than that of the incident wave, i.e. 

� � 1r t� � ( � � 1l t� � ), the width of the reflected wave is smaller than that of the incident wave, and the wave 

is compressed after reflection from the right (left) boundary. The vibratory energy of the translating string 

increases if an infinitesimal wave is compressed after reflection from a boundary.

Consider an infinitesimal wave in the translating string, which is assumed, without loss of generality, to 

be initially located at the left boundary at time 
0t and propagate rightward. The series of times when the wave 

travels to the right boundary and back to the left boundary are denoted by nt A ( 0,1,2,n � � ) and nt (

1,2,3,n � � ), respectively. The phase of the translation velocity � � � �0 1 sinv t v v t�� � at nt is denoted by 

� � * �0,2n nArg t� � 4� @ . A period- i fixed point n� of the phase function if is defined by

� �i
n i nf� �� � ,

1 1n n n i� � �� � �B B B� .                                                     (4)

Instability occurs when n� is an attracting period- i ( 1i C ) fixed point of function if . From the derivation in

Ref. [3], � � � � � � � � � � � �1 1 1 1 1l n r n l n r n l n i r n it t t t t t� � � � � �� � � � � �
A A A �� , which means the same infinitesimal wave 

is overall compressed for the first time after i ( 1i C ) round trips, and will be further compressed after each i
round trips. This type of instability is referred to as period- i ( 1i C ) parametric instability.

3. Results
There are five non-trivial cases that involve 

different combinations of string and boundary 

motions: I) a translating string with a sinusoidally 

varying velocity and two stationary boundaries; II) a 

translating string with a sinusoidally varying 

velocity, a sinusoidally moving boundary, and a 

stationary boundary; III) a translating string with a 

sinusoidally varying velocity and two sinusoidally 

moving boundaries; IV) a stationary string with a 

sinusoidally moving boundary and a stationary 

boundary; and V) a stationary string with two 

sinusoidally moving boundaries.

Period-1 parametric instability regions are analytically obtained, and

period- i ( 1i � ) parametric instability regions can be numerically calculated 

using bifurcation diagrams. Figure 2 shows the parametric instability regions for 

case III. It is proved using Sharkovsky’s theorem that only period-1 parametric 

instability regions exist in case IV, and no period- i ( 1i � ) parametric instability

regions can be numerically found in case V.

Similar to classical resonance, all the period-1 parametric instability regions 

are centered at the natural frequencies of the translating or stationary strings 

with an averaged translation velocity and/or an averaged length. For instance, all 

period-1 parametric instability regions in case III are centered at the natural 

frequencies of the translating string � �2

0 01k k v� 4� � with an averaged 

translating velocity 
0 0.5v � and an averaged unit length as shown in Fig. 2.

Fig. 2 Period-1 through period-3 parametric

instability regions in case III with 
0 0.5v � ,

21 22 0.1414v v� � ,
1 0.5� 4� , and 

2 1.5� 4� .

Fig. 3 Wave pattern of the

translating string in case

III with parameters

chosen within period-2

parametric instability

region with 3k � at

48t �
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If the parameters are chosen to be in the period- i
( 1i C ) parametric instability region corresponding to 

an integer k , an initial smooth wave will be infinitely 

compressed to k shock-like waves as time 

approaches infinity. Figure 3 shows the wave pattern 

of the translating string in case III with parameters 

chosen with in the period-2 parametric instability 

region with 3k � at 48t � . There are three infinitely 

compressed shock-like waves in the wave pattern.

The stable and unstable responses of the linear 

model in case I are compared with those of a 

corresponding nonlinear model that considers the 

coupled transverse and longitudinal vibrations of the 

translating string and an intermediate linear model 

that includes the effect of the tension change due to 

axial acceleration of the string on its transverse 

vibration [4]. The transverse displacement of the 

translating string at the middle point is calculated 

from the original linear and nonlinear models and an 

intermediate linear model [4] using Galerkin’s 

method with parameters chosen within the stable and 

parametric instability regions of the original linear 

model, as shown in Fig. 4. The initial displacement in 

the transverse direction is chosen as a half sine wave 

and the other initial conditions are zero. The 

transverse vibratory energies of the translating string 

from the three models are shown in Fig. 5. They 

overall grow with time in Figs. 5(b,d,f), with the 

largest growth rate in Fig. 5(b) and the smallest 

growth rate in Fig. 5(d), which means that the

parametric instability also exists in the nonlinear and 

intermediate linear models. The transverse 

displacements of the translating string at the middle 

point from the three models grow sharper with time 

for the unstable solution in Figs. 4(b,d,f), and there 

are no obvious sharpness changes in the transverse 

displacements for the stable solutions in Fig. 4(a,c,e).
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Fig. 4 Transverse displacement of the translating

string at the middle point calculated using Galerkin's

method from (a,b) the original linear model, (c,d) the

nonlinear model, and (e,f) the intermediate linear

model for the translation velocity corresponding to

the (a,c,e) stable and (b,d,f) unstable solutions

Fig. 5 Transverse vibratory energy of the translating

string from (a,b) the original linear model, (c,d) the

nonlinear model, and (e,f) the intermediate linear

model for the translation velocity corresponding to

the (a,c,e) stable and (b,d,f) unstable solutions
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