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 The International Symposium on Vibrations of Continuous Systems is a forum 
for leading researchers from across the globe to meet with their colleagues and 
present both old and new ideas on the field.  Each participant has been encouraged 
to either present results of recent research or to reflect on some aspect of the 
vibration of continuous systems which is particularly interesting, unexpected or 
unusual.  This type of presentation is meant to encourage participants to draw on 
understanding obtained through many years of research in the field. 
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Columbia.  Nestled between Whistler and Blackcomb Mountains, this venue provides 
a spectacular backdrop and the opportunity to easily explore the mountains, lakes 
and rivers nearby.   
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the Symposium as well as short biographical sketches of the authors. 
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Applications of Steady-State Modal Data for a Piezoelectric Waveguide

with a General Cross-Section

Hao Bai

Mechanical Engineering Department
Lakehead University

Thunder Bay, Ontario, Canada

Ertugrul Taciroglu and Stanley B. Dong

Civil and Environmental Engineering Department
University of California

Los Angeles, California, 90095-1593, USA

We are concerned with a prismatic cylinder of general cross-sectional shape as well as in
its composition of any number of distinct piezoelectric materials. The materials comprising
the cross-section are assumed to be perfectly bonded to each other at contiguous interfaces.
The governing equations of motion are based on finite element modeling of the cross-
section, but leaving the axial dependence and time undetermined at the outset; this method
of derivation is known as semi-analytical finite elements. The spectral decomposition of
the governing differential operator yields a complete set of modal data, that consist of all
propagating modes as well as edge vibrations for the cylinder. Herein, we utilize these
modal data (1) to study reflection of an incoming monochromatic wave reflections at the
free end of a semi-infinitely long prismatic beam and (2) to construct a steady-state Green’s
function.
Governing Equations

The semi-analytical finite element equations of motion for free vibration are

K1V,zz −K2V,z −K3V − MV̈ = 0 (1)

where M - mass matrix obtained by assembly over the N elements of the finite element
model of the cross-section, and Ki (i = 1, 2, 3) - the assembled stiffness operators and
V - assembled nodal displacement components (u, v, w) and electric potential φ. The Ki

(i = 1, 2, 3) and M matrices are formulated by modeling the behavior in the discretized
cross-section by two-dimensional (x, y) interpolations leaving the axial dependence z and
time t unspecified at the outset. We note that M, K1 and K3 are symmetric, while K2 is
antisymmetric.
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Wavelike Solutions

Using V = V0e
i(ωt+kz) as the free vibration solution form in Eq. (1) gives

[−k2K1Vo − ikK2V0 − K3V0 + ω2MV0

]
ei(ωt+kz) = 0 (2)

As ei(ωt+kz) is never zero for all z’s and t’s, the bracketed expression representing a
two-parameter algebraic eigensystem must vanish. Depending on the choice of eigenpa-
rameter for this problem, data on either propagating waves or end modes are obtained.
Propagating Waves

Designating ω2 as the eigenvalue and employing real k’s gives a complex (hermitian)
algebraic system for propagating waves. This hermitian system can be rendered real by
doubling its size, i.e.,[

K3 + k2K1 −kK2

kK2 K3 + k2K1

]{
V0

−iV0

}
= ω2

[
M ·
· M

] {
V0

−iV0

}
(3)

where real symmetric positive-definite (except for k = 0) matrices occur on both sides.
Therefore, real ωi’s are anticipated.
End Modes

Opting for k as the eigenvalue, assigning real ω2 and inverting K1 in the bracketed
expression in Eq. (2) leads to

k2V0 + ikK−1
1 K2V0 + K−1

1

(
K3 − ω2M

)
V0 = 0 (4)

This complex eigenproblem can be converted to real form by first introducing γ = ik,
defining V1 = γV0 and then doubling its size.[ · I

K−1
1 (K3 − ω2M) K−1

1 K2

]{
V0

V1

}
= γ

{
V0

V1

}
(5)

This eigenproblem admits both real and complex conjugate eigenvalues describing what
are called end modes, where their amplitudes regress exponentially or damped sinusoidally
into its interior from the free end of a semi-infinitely long cylinder. Real eigenvalues γ’s
describe monotonic exponential decay, while complex eigenvalues γ’s involve sinusoidal
decay. The special case of γ being purely imaginary, so that the corresponding k is real,
portrays a propagating wave and does not fit the description of an end mode; but they are
part of the eigendata of system (5). Right- and left-handed eigenvectors φi’s and ψi’s, can
be extracted from this system. They satisfy a bi-orthogonality relation.
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Reflection of Monochromatic Waves at Free End of a Piezoelectric Beam

The end mode eigendata can be used to construct the reflected wave caused by a steady
monochromatic wave impinging upon the free end of a semi-infinitely long piezoelectric
beam. For an incident wave originating from z = +∞, the reflected wave has the form

Vrefl(z, t) =
N∑

n=1

anφne
i(knz−ωt) (6)

Using a sufficient number of end modes including all possible propagating waves for the
reflected wave, it is possible to enforce traction-free conditions at the free end on a least-
squares basis. Some examples will be given.
Steady-State Green’s Function

Given a steady-state point load F at an arbitrary location (xo, yo, zo), a Fourier trans-
form of it in z gives f̄(xo, yo). The Green’s function is found by some summation involving
the aforementioned right eigenvectors together with an inverse Fourier transform. The
solution is

V (z) =
1
2π

2N∑
n=1

∫ +∞

−∞

ψT
n f̄

Bn(k − kn)
φne

ikzdk (7)

For transformed variables independent of wave number k (i.e., the usual case), application
of the Cauchy residue theorem yields the modal response. As the eigendata can be divided
into two sets of waves, along the positive and negative z-direction, the solution can be
written as

V (z) = i
∑

k∈k+
n

ψT
n f̄

Bn(k − kn)
φne

−iknz + i
∑

k∈k−
n

ψT
n f̄

Bn(k − kn)
φne

iknz (8)

The convergence and accuracy of the summation was discussed for beams having different
electric surface conditions. Both the mechanical load and electric charge are used as sources
in this study.
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Advances in dynamic stiffness plate elements for free vibration
analysis of isotropic plates and stringer panels with mass and spring

attachments

M. Boscolo, F. A. Fazzolari and J. R. Banerjee
School of Engineering and Mathematical Sciences, City University London, EC1V 0HB, UK

1 Introduction

Free vibration analysis of thin-walled structures plays an important role in aeronautical as well as
naval and automobile design, amongst others. For instance, aircraft wings and fuselages are idealised
as assemblies of thin skin reinforced by stringers. These structures are modelled as plate assemblies
and often investigated by using the finite element method (FEM). One of the main advantages of
using the FEM is that it can handle structures with complex geometry and the results generally
converge to the exact ones with increasing number of elements. Nevertheless, FEM is an approximate
method, requiring considerable computational power (e.g. analysis time, pre and post-processing time,
storage requirement etc.) and modelling efforts. The accuracy of the FEM solution cannot be always
guaranteed. This is particulary true for free vibration analysis at high frequencies. Although often
overlooked, there is a much better method for free vibration analysis which is that of the dynamic
stiffness method (DSM). The DSM gives exact results because the equations of motion are solved
in closed analytical form when deriving the element properties. It should be noted that the DSM
has been extensively developed for bars and beams at present [1, 2]. The extension of the DSM
to plate elements is difficult, but indeed, very essential to model complex structures. Wittrick and
Williams [3] are known to be the first who attempted the extension of DSM to plate elements. Their
novel formulation is interesting and relies on extensive use of complex algebra. However, the effects of
shear deformation and rotatory inertia were neglected in their analysis so that their DSM was entirely
based on simple classical plate theory (CPT). They implemented their work in a computer program
called VICONOPT [1,3,4] which has been extensively tested, validated and used for research both by
the academia and the industry. The dynamic stiffness (DS) formulation for plates given by Wittrick
and Williams [3, 4] is not suitable for analysing thick plates because of their CPT assumption. To
circumvent this problem, Wittrick and Williams’ work has recently been enhanced by the first and the
third authors [5] of this paper as they included the important effects of shear deformation and rotatory
inertia in their formulation. Also, during their investigation for in-plane free vibration, a special set of
solutions for plates that was missed by Wittrick and Williams [1] was brought to light [6], illustrating
significant results. In this paper, both the in plane and out of plane DS matrices using first order shear
deformation theory (FSDT) are essentially assembled using necessary features such as element rotation,
offset connection etc to carry out free vibration analysis of structures. For illustrative purposes, the
free vibration analysis of a stringer panel is used as a classic example and the results are compared
with those obtained from the FEM analysis through the application of NASTRAN. By carrying out a
detailed parametric study, further results are presented to demonstrate the effects of spring and mass
attachments on the free vibration characteristics of plates for different boundary conditions.

2 Theory

A general procedure for the dynamic stiffness formulation of a structural element can be summarised
as follows: (i) Obtain the differential equations of motion and the natural boundary conditions for
the problem by applying Hamilton’s principle, (ii) Solve the differential equations in closed analyt-
ical form, (iii) Apply general boundary condition for forces and displacements at the chosen nodes,
(iv) Eliminate the integration constants to relate the amplitudes of harmonically varying forces to
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the corresponding displacements. In general, when exact natural frequencies and mode shapes are
sought through the use of analytical solutions, but without resorting to DSM, particular boundary
conditions are applied and the frequency equation is obtained by eliminating the integration con-
stants. This is termed as the classical method [7, 8] which is restricted to special cases. In the DSM
development, general boundary conditions in algebraic form are applied, leading to a DS element
which can be assembled in global coordinates to form the DS matrix of the complete structure. In
essence, the global DS matrix contains implicity all the natural frequency information of the structure.

The out-of-plane DS matrix for a plate element with the effects of shear deformation and rotatory
inertia obtained in [5] is combined with the inplane DS matrix [6] to give the following relationship:




Nxx1

Nxy1

Qx1

Mxx1

Mxy1

Nxx2

Nxy2

Qx2

Mxx2

Mxy2




=




snn snl 0 0 0 fnn fnl 0 0 0
sll 0 0 0 −fnl fll 0 0 0

sqq sqm sqt 0 0 fqq fqm fqt

smm smt 0 0 −fqm fmm fmt

stt 0 0 fqt −fmt ftt

snn −snl 0 0 0
Symmetric stl 0 0 0

sqq −sqm sqt

smm −smt

stt







U1

V1

W1

Φy1

Φx1

U2

V3

W2

Φy2

Φx2




(1)

The sign conventions for forces and displacements are shown in Figure 1.

Figure 1: Edge conditions of the plate
element and sign conventions

The above DS element can be rotated and/or offset by using
transformation matrices to assemble the global DS matrix of the
final structure. (The assembly procedure in DSM is similar to
that of the FEM.) Once the global DS matrix of the structure is
formed, the best way to solve the eigen-value problem to yield
natural frequencies, is to apply the Wittrick and Williams al-
gorithm [9]. The mode shapes are then routinely computed by
using the global DS matrix and setting the force vector to zero
with a nodal displacements given an arbitrary value. Care must
be exercised when deciding the arbitrarily chosen nodal displace-
ment because mode shapes can be dominated by either in plane
displacements or out of plane displacements.

3 Preliminary results

Figure 2: Stringer panel
geometry

The DSM developed in this paper has been used to carry out the free
vibration analysis of a stringer panel which has a width b = 1 m, thickness
h = 0.002 m and length L = 1 m. The stringer is located in the middle
of the plate. The web of the stringer is 0.2 m high and its flange is 0.1
m long. The plate is made of aluminium with density ρ = 2800 kg/m3,
Young’s modulus E = 72 GPa, and Poisson’s ratio ν = 0.3. A schematic
view is shown in Figure 2. The first 8 natural frequencies were computed
using the present theory and are compared with the results obtained by
the FEM software NASTRAN using two different mesh sizes. These are shown in Table 1. The first
and the fifth mode shapes are shown in Figure 3. The error in the FEM analysis is relatively small
for all the natural frequencies except one. Increasing the number of elements increases the accuracy
for most of the cases. Note that the FEM solution does not rapidly converge to the exact one in some
cases. As can be seen in Table 1, the fifth mode shows comparatively larger error. It corresponds to a
local mode of the flange, indicating that the FEM provides less accuracy in determining local modes.
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An exhaustive set of results is presented in the full paper which deals with spring and mass attachments
at critical locations of a plate to illustrate their effects on its natural frequencies and mode shapes.
Such a parametric study offers considerable benefits to the designers to solve frequency attenuation
problem when avoidance of certain natural frequencies becomes necessary.

4 Concluding remarks
Table 1: First 8 natural frequencies for the stringer panel with 4 sides
simply supported.

DSM FEM, NASTRAN
20 ×2 0 mm 5×5 mm

Mode ω, rad/s ω, rad/s error % ω, rad/s error %
1 856.47 852.10 -0.51 852.44 -0.47
2 1029.31 1027.11 -0.21 1027.76 -0.15
3 1295.22 1292.02 -0.25 1294.86 -0.03
4 1441.73 1437.99 -0.26 1441.84 0.01
5 1713.85 1635.20 -4.59 1631.24 -4.82
6 2027.19 2020.93 -0.31 2027.35 0.01
7 2140.81 2133.14 -0.36 2141.38 0.03
8 2554.86 2535.98 -0.74 2542.94 -0.47

By applying the DSM for plate
elements based on the first or-
der shear deformation theory,
benchmark solutions for simple
and complex structures are ob-
tained. The DS results can be
used as an aid to validate FEM
and other approximate meth-
ods. The investigation has con-
firmed that the DSM is a much
faster and more accurate anal-
ysis tool than the traditional
FEM.
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Figure 3: Vibration mode comparison between DSM and FEM
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Three-dimensional natural frequency analysis of a piezoelectric plate by 
perturbation method 

 
Piotr CUPIAŁ 

Department of Process Control, Faculty of Mechanical Engineering and Robotics, 
AGH University of Science and Technology, Kraków, Poland. Email: pcupial@agh.edu.pl 

 
 
1. Introduction 
 
     The natural frequencies of a ceramic piezoelectric rectangular plate using three-dimensional 
formulation have been studied in Ref. [1]. In order to calculate the frequencies and the 
corresponding mode shapes, a set of coupled electromechanical governing equations has been 
solved there, under the corresponding mechanical and electrical boundary conditions. The 
present paper summarizes the use of a perturbation approach to the approximate calculation of  
a three-dimensional piezoelectric plate. A first-order perturbation solution is demonstrated to 
provide results that are accurate from the application point of view.  
 
2. Formulation of the problem and the solution method 
 
      The governing equations of the free vibration of a three-dimensional piezoelectric plate have 
been discussed in Ref. [1]. They consist of four coupled equations with unknown displacements 

  and electrostatic potential zyx uuu ,, φ . Assuming simply-supported boundary conditions along 
the four plate sides the solution is sought in the form: 
 

 )sin(

)sin()sin()(
)sin()sin()(
)cos()sin()(
)sin()cos()(

),,,(
),,,(

),,,(
),,,(

t
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z
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x
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
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. (1) 

 
The bar over a symbol stands for a non-dimensional quantity. Using the form of solution (1), the 
coupled equations of free vibration have the  following form: 
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The non-dimensional quantities in Eqs. (1) and (2) are defined as follows: 
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The values of the material constants have been specified in Ref. [1], and the following reference 
values will be used: 3311, eecc refref == .  In addition, a small parameter 33/1 κ=µ  enters  
Eq. (2d).   
      It is assumed that no surface tractions are applied to the plate faces and that the faces are 
electrically short-circuited, in which case the boundary conditions on the plate faces ( 0=z and 

1=z  ) are written  as follows: 
 

 
.0)(,0)()()]()([

,0)()(,0)()(

333313 =Φ=Φ′ξ+′ξ+π+π−
=π+′ξ=π+′ξ

zzezZczYrnzXmc
zZrnzYzZmzX

 (4) 

 
      In order to transform the problem to a standard form used in perturbation analysis, a new 
function )(ˆ zZ is defined: 
 
 3

3
2

21)(),()(ˆ)( zazazazpzpzZzZ ++=+= , (5) 
  

where: [ ] [ ])1()0(,)1()0(2),0(
33

33
3

33

33
2

33

33
1 Φ′+Φ′−=Φ′+Φ′=Φ′−=

c
e

a
c
e

a
c
e

a . 

 
With this transformation, the electrostatic potential is removed from the third of boundary 
conditions (4), whereas the form of the remaining boundary conditions is unchanged.  When 
expressed in terms of )(ˆ zZ , the first three boundary conditions are those of an elastic plate 
without piezoelectric coupling. The governing equations, when expressed in terms of )(ˆ zZ , 
contain the polynomial )(zp  and its derivatives up to the second order. 
 
      According to the perturbation method the functions )(),(ˆ),(),( zzZzYzX Φ  are expanded in 
series of the small parameter µ: 

 

KK

KK

+Φµ+Φµ=Φ+µ+=

+µ+=+µ+=

)()()(,)(ˆ)(ˆ)(ˆ
)()()(,)()()(

)2(2)1()1()0(

)1()0()1()0(

zzzzZzZzZ

zYzYzYzXzXzX
 (6) 

 K+µ+µ= )()()( )2(2)1( zpzpzp  
 
It is to be noted that the power series that defines )(zΦ  begins with the first power of the small 
parameter , in consistency with Eq. (2d). µ
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The zero-order approximation is obtained by solving the problem of the free vibration of  
an anisotropic elastic plate. In this way, the eigenvalues 2)0()0( )( mnmn ω=λ  are found together with 
the corresponding mode shapes. The first-order potential term )()1( zΦ  is then obtained using the 
equation: 
 

 

)].(ˆ)(ˆ)(

)()()[()()()(

)0(2
33

)0(22222
15

)0(
3115

)0(
3115

)1(22222

33

11)1(2

zZezZnrme

YnreezXmeeznrmz

″
ξ−π+π+

′
πξ++

′
πξ+−=Φπ+π

κ
κ

−
″

Φξ
 (7) 

 
Having solved Eq. (7) for )()1( zΦ , one can determine the first-order perturbation operator in 
Eqs. (2a-c). The eigenvalue including the first-order correction: λ  can be 
calculated by making direct use of the generalized eigenvalue problem perturbation formulas, 
discussed in Ref. [2]. 

)1()0(
mnmnmn µλ+λ≅

 
3. Numerical results 
      
       By way of illustration, Table 1 shows the natural frequencies of an elastic plate (zero-order 
approximation). The results that include the first-order correction are shown in Table 2. For 
comparison, exact values taken from Ref. [1], obtained using the coupled electromechanical 
solution, are shown in Table 2 in parentheses. By including the first-order correction, the relative 
error is reduced from about –11% (zero-order approximation) to about –1.5%, for the material 
constants typical of PZT4, for which 2579.0=µ . Considerable increase in accuracy can 
therefore be achieved using first-order perturbation analysis. Higher order perturbation terms are  
being studied now using the above approach.    
 

 Table1: Lowest non-dimensional circular frequencies of a rectangular plate with r = a/b = 2 and  
ξ = a/h = 100. The case of elastic plate without electromechanical coupling (zero-order aproximation). 

     n 
m      1 2 3 

1 1144.0)0(
11 =ω  3887.0)0(

12 =ω  8430.0)0(
13 =ω  

2 1828.0)0(
21 =ω  4564.0)0(

22 =ω  9101.0)0(
23 =ω  

3 2969.0)0(
31 =ω  5695.0)0(

32 =ω  022.1)0(
33 =ω  

 

Table 2: First-order perturbation solution. Exact values after Ref. [1] are given in parentheses. 

      n 
m      1 2 3 

1 1266.011 =ω  
(0.1287) 

4301.012 =ω  
(0.4368) 

9331.013 =ω  
(0.9476) 

2 2023.021 =ω  
(0.2056) 

5052.022 =ω  
(0.5132) 

008.123 =ω  
(1.023) 

3 3286.031 =ω  
(0.3338) 

6306.032 =ω  
(0.6405) 

132.133 =ω  
(1.149) 
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Introduction. Laminated composite plates are widely used as structural components in many en-
gineering applications. They are typically characterized by higher shear and normal flexibility than
traditional isotropic plates and exhibit the so-called zig-zag form of displacement field in the thickness
direction. Such properties, along with high degrees of orthotropy and moderate thickness-to-length
ratios, put great difficulties in achieving accurate description of their mechanical behavior using classi-
cal plate theories. A considerable effort was thus made to derive refined 2-D modeling of multilayered
structures, ranging from higher-order equivalent single layer (ESL) theories to layer-wise (LW) formu-
lations [1]. At the same time related techniques that were suitable for computer implementation have
been developed. In this context, a powerful approach, referred as Carrera’s unified formulation (CUF),
was introduced by the second author in the mid-nineties of the last century. It is a formal technique
permitting to handle in an unified manner an infinite number of 2-D displacement-based or mixed ESL
and LW axiomatic plate and shell theories with variable kinematic properties. CUF was successfully
implemented to obtain Navier-type analytical solutions and finite element results for bending, buckling
and vibration problems of transversely anisotropic structures.

Present study. Attention is focused in this study on extending CUF to the Ritz method for free
vibration analysis of straight-sided quadrilateral laminated plates having an arbitrary combination
of free, clamped and simply supported boundary conditions. It is widely recognized that the Ritz
method has a high spectral accuracy and converge faster than local methods such as finite elements.
Therefore, it can provide reliable upper-bound benchmark vibration results and can be quite suitable
during preliminary design studies and/or parametric analyses. Contrary to all previous Ritz-based
formulations relying on axiomatic plate models with a fixed kinematic theory, the present approach
allows to generate arbitrarily accurate Ritz solutions from a large variety of higher-order ESL and
LW theories by properly expanding so-called Ritz fundamental nuclei of the plate mass and stiffness
matrices. The Ritz fundamental nuclei are invariant with respect to the order of theory and thus no
ad hoc theoretical development and software coding is needed when the order is changed. Chebyshev
polynomials multiplied by boundary functions are used here as admissible functions. The combination
of formalism of CUF and Ritz expansion based on Chebyshev polynomials has been denoted as variable-
kinematic Chebyshev-Ritz method.

Mathematical modeling. A general quadrilateral flat laminated plate of uniform thickness h and
Nl orthotropic layers is considered. For generality and convenience, the formulation is expressed in
dimensionless form. Thus, the actual quadrilateral plate in the x − y physical domain is mapped into
a square plate in the computational ξ − η domain (−1 ≤ ξ, η ≤ 1). The constitutive equations of a
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generic layer k are written as:

σ
k
p = Ck

ppǫ
k
p + Ck

pnǫ
k
n σ

k
n = Ck

npǫ
k
p + Ck

nnǫ
k
n (1)

where σ and ǫ are the stresses and strains, split into in-plane (p) and out-of-plane (n) components, and
matrices C contain the elastic coefficients. According to CUF and assuming harmonic motion with
circular frequency ω, the displacement vector for each k-th lamina is expressed through an indicial
notation over τ as follows:

uk(ξ, η, z, t) = Fτ (z)ûk
τ (ξ, η)ejωt (2)

where τ = t, r, b, r = 2, . . . ,N − 1, Fτ (z) are assumed thickness functions and N is the order of the
theory. Note that in Eq. (2) the summation convention for repeated indices is implied. Strains are
linearly related to displacements according to the following relations:

ǫ
k
p = Fτ (z)Dpû

k
τ (ξ, η)ejωt

ǫ
k
n = Fτ (z)Dnû

k
τ (ξ, η)ejωt + Fτ,z (z)ûk

τ (ξ, η)ejωt (3)

where Dp and Dn are matrices of differential operators. Following the standard Ritz procedure and
introducing another indicial notation over i, the components of the displacement amplitude vector
ûk

τ (ξ, η) are approximated by sets of two-dimensional finite series as follows:

ûk
τ (ξ, η) = Φτi(ξ, η)ck

τi (4)

in which i = 1, . . . ,M and Φτi is a 3 × 3 diagonal matrix whose elements φατi(ξ, η) (α = u, v,w)
are given by the product of a two-dimensional polynomial pi(ξ, η) and a boundary-compliant function
φb

ατ (ξ, η) such that
φατi(ξ, η) = φb

ατ (ξ, η)pi(ξ, η) = φb
ατ (ξ, η)pq(ξ)pr(η) (5)

ps(χ) = cos [(s − 1) arccos(χ)], (s = 1, 2, . . . , P ;χ = ξ, η), is the 1-D s-th Chebyshev polynomial and the
indices i, q and r are related by the following expression: i = P (q−1)+r. Using the above quantities, the
maximum strain energy Umax and the maximum kinetic energy Tmax of the plate vibrating harmonically
are given by

Umax =
1

2

Nl∑
k=1

ckT

τi Kkτsijc
k
sj Tmax =

1

2
ω2

Nl∑
k=1

ckT

τi Mkτsijc
k
sj (6)

where

Kkτsij =

∫∫ +1

−1

{
(DpΦτi)

T
[
Ek

τsC
k
pp (DpΦsj) + Ek

τsC
k
pn (DnΦsj) + Ek

τs,z
Ck

pnΦsj

]
+ (DnΦτi)

T
[
Ek

τsC
k
np (DpΦsj) + Ek

τsC
k
nn (DnΦsj) + Ek

τs,z
Ck

nnΦsj

]
+ΦT

τi

[
Ek

τ,zsC
k
np (DpΦsj) + Ek

τ,zsC
k
nn (DnΦsj) + Ek

τ,zs,z
Ck

nnΦsj

]}
|J|dξdη

(7)

Mkτsij =

∫∫ +1

−1
ΦT

τiE
k
τsρ

kΦsj|J|dξdη (8)

are 3 × 3 matrices representing the Ritz fundamental nuclei of the formulation. In Eqs. (7,8) |J|
is the determinant of the Jacobian matrix of the transformation and the following layer integrals
are introduced: Ek

τs =
∫
k
FτFsdz, Ek

τs,z
=

∫
k
FτFs,zdz, Ek

τ,zs =
∫
k
Fτ,zFsdz, Ek

τ,zs,z
=

∫
k
Fτ,zFs,zdz.

The global stiffness K and mass M matrix of the plate are obtained by first expanding at a layer
level the fundamental nuclei through variation of the indices τ and s. The corresponding matrices
at multilayer level are assembled according to the used variable descriptions. In the ESL case these
matrices are simply summed, whereas LW models require continuity of displacement variables at the
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Table 1: Comparison of the first four frequency parameters λ = ωh
√

ρ1/E1
2 corresponding to some

lower-order modes of a square simply-supported cross-ply [0/90o] plate with h/b = 0.1.

Mode (m, n) Theory 1 2 3 4
(1,1) Exact [2] 0.06027 0.52994 0.58275 1.23675

ED6 0.06041 0.53404 0.58406 1.23887
LD3 0.06027 0.52994 0.58275 1.23684

(1,2)(2,1) Exact [2] 0.14539 0.62352 0.95652 1.23891
ED6 0.14609 0.62470 0.96396 1.23980
LD3 0.14539 0.62352 0.95653 1.23901

(2,2) Exact [2] 0.20229 0.95796 1.03000 1.23958
ED6 0.20344 0.96443 1.03280 1.24092
LD3 0.20229 0.95796 1.03001 1.23969

Table 2: Comparison of the first eight frequency parameters λ = ωb2/π2h
√

ρ1/E1
2 for clamped anti-

symmetric angle-ply [45o/ − 45o/45o/ − 45o] rhombic composite laminates with h/a = 0.1.

Skew angle Theory Mode
1 2 3 4 5 6 7 8

30o Ref. [3] 2.6325 3.9549 4.7125 5.2107 6.3577 6.4954 6.9760 7.7176
FSDT 2.7415 4.1217 4.9126 5.4393 6.6178 6.7834 7.2749 8.0387
ED3 2.6332 3.9555 4.7116 5.2082 6.3554 6.4892 6.9684 7.7069
LD2 2.5864 3.8889 4.6365 5.1223 6.2625 6.3891 6.8693 7.6034

45o Ref. [3] 3.3015 4.6290 5.8423 6.0039 7.0792 7.7269 8.2726 8.9874
FSDT 3.4429 4.8218 6.0844 6.2411 7.3679 8.0201 8.6065 9.3235
ED3 3.3029 4.6297 5.8393 6.0027 7.0710 7.7221 8.2560 8.9741
LD2 3.2463 4.5577 5.7535 5.9219 6.9747 7.6256 8.1521 8.8731

interface. Finally, resulting matrices are expanded by varying the indices i, j related to the Ritz
expansion. Matrices K and M have dimensions 3M(N + 1)× 3M(N + 1) for ESL models and [3(N +
1)Nl − 3(Nl − 1)]M × [3(N + 1)Nl − 3(Nl − 1)]M for LW models. The extremization of the energy
functional Π = Umax−Tmax with respect to the coefficients ck

τi yields a standard generalized eigenvalue
problem.

Results. Two preliminary results are here presented to show the applicability of the method. A
square simply-supported cross-ply [0/90o] plate with thickness-to-length ratio 0.1 is first considered in
Table 1. Ritz solutions obtained with a sixth-order ESL theory (ED6) and a third-order layer-wise
theory (LD3) are compared against exact solutions from [2] for the first four frequency parameters
λ = ωh

√
ρ1/E1

2 corresponding to lower-order modes (1,1), (1,2)=(2,1) and (2,2). It is seen that very
good agreement is obtained with LW models. A second example is shown in Table 2, where the first
eight non-dimensional frequencies of clamped angle-ply [45o/ − 45o/45o/ − 45o] rhombic composite
laminates with h/a = 0.1 and two skew angles are presented. Numerical values computed from first-
order shear deformation theory (FSDT), a third-order ESL theory (ED3) and a second-order layer-wise
theory (LD2) are compared with finite element results from [3]. ED3 solutions agree with reference
values. It is seen that more accurate results are obtained using a LW model.
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For a single degree of freedom oscillator, the concept of physical damping beyond the 

“critical damping” value is characterized by “overdamped” response behavior.  For free 

vibration, this overdamped response to an initial disturbance results in no oscillatory 

behavior—which is the basic requirement of “vibration”.   For forced response, very high 

damping (even at levels somewhat less than critical damping) results in response levels 

less than the static (zero frequency) deflection, with no response “amplification” near the 

undamped natural frequency. 

 

For continuous systems, the concept of overdamped response is more difficult to 

describe.   Indeed, for continuous systems, the physics of vibration is in one way entirely 

different than for a single degree of freedom oscillator.  That is, free vibration of 

structural elements can be described as the constructive interference of wave motion from 

a disturbance and the reflection of such wave motion from structural boundaries.  If the 

damping is too great, however, traveling waves will dissipate before getting to a 

boundary.  With no reflection, there is no modal response.   

 

A heavily damped plate subjected to an impulsive excitation in the interior will sound 

“dead”—high frequency components of response are damped out before reflection, and 

only a low frequency “thud” survives as vibration—there is no “ringing”.  The same plate 

subjected to oscillatory excitation responds similarly:  lower frequency “modes” may 

respond, but higher frequency modes cannot, because there is no reflection from 

boundaries to “set up” the higher frequency modes.   

 

Recent experiments aimed at discovering the limits of applicability of damping 

estimation algorithms have brought to light some interesting behavior of plates as well as 

an explanation of when damping estimation fails in terms of the existence of true 

vibration.   

 

Taking a viewpoint from room acoustics, a parallel with structural response within a 

closed domain (a structure or structural element) is made.  Near a point source of 

sound—in the “near field”—the response an “ear” hears is dominated by the source.  Far 

from the sound source—in the “far field”—the response is dominated by the reflections 

from the room walls.  Therefore, in the far field, the state of sound is called a 

“reverberant field”.   At any given frequency, the degree of coherency is totally due to the 

geometry of the room and, when the coherency is high—at an essentially infinite number 

of natural frequencies—the response is manifested as acoustic modes of the room.  In the 

case of structural vibration, for low levels of damping, nearly the entire structural element 

is in the reverberant field with respect to excitation at a point.   At natural frequencies, the 

entire structural element responds in the natural modes of vibration.  
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Using statistical energy analysis, an estimate of the “radius of the near field” in a plate 

may be made by noting when the near field kinetic energy equals the kinetic energy in the 

far field.  Lyon and DeJong have reported this radius to be: 

g

D
c

M
r





2
  

Here, ω is the radial frequency, η is the loss factor, M is the plate mass, ρ is the density 

and cg is the group velocity in the plate. 

 

In the reverberant field, the causal relationships on which modal analysis and modal 

testing are based exist.  However, inside the near field, the response is not representative 

of the whole structure; rather, it is dependent on the local excitation, and not significantly 

dependent on the reflection of flexural waves from the boundaries.  As such, damping 

estimation using the normal input-output (causal) relationships inside the near field—

such as force-to-displacement frequency response functions—must fail.  For high levels 

of damping, then, damping estimation algorithms based on input-output relationships 

including the popular, Impulse Response Decay Method (IRDM), modal curve-fitting and 

half-power bandwidth techniques must fail.  Only output-only techniques such as the 

Random Decrement Method can work.  In a recent study, the responses of three plates 

with loss factors 0.001 (0.1%), 0.01 (1%) and 0.1 (10%), subjected to a random force at a 

single point were simulated with a finite element model (although a continuous system 

model could have been used as easily).  The resulting responses at up to 16 points on the 

plate were used to estimate the loss factor using the IRDM.  The loss factor estimations 

for the two lower loss factors nearly perfectly matched the model loss factors.  But, for 

the plate model with a 10% loss factor, serious errors occurred, especially at high 

frequencies, as shown, below, regardless of the number of responses used.  Presumably, 

the problem was that many of the response points were inside the near field.  [All 

estimations using the Random Decrement Method resulted in a match with the model loss 

factors.] 

 
 

To shed some light on this, a steel plate completely treated with constrained layer 

damping has been subjected to sinusoidal mechanical excitation at a point to demonstrate 

the existence of the near- and far-fields observable in a highly-damped plate.  The 

velocities of 4800 points on the plate were recorded using a scanning laser vibrometer.  
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Plots of the resulting kinetic energy of the plate are shown below.   On these plots, a 

circle with radius predicted by the equation above (using estimates of the loss factor) is 

also shown, giving an indication of the close agreement between theory and experiment.  

Clearly, the radius of the near field decreases with frequency:  higher frequency 

oscillations damp out in a shorter distance. 

 

 
f = 1000 Hz,   = 0.08   f = 4000 Hz,   = 0.0625 

Dr = 8.772 in.     Dr = 13.71 in.  

 

The bottom line for damping estimation is that if one uses input-output relationships 

based on response outside the near field, accurate estimates result, because the input-

output relationships are valid.  If responses within the near field are used, the response is 

far greater than the input-output relationship would predict.  Therefore, damping is 

underestimated:  high response equals low damping.  So, to carefully estimate structural 

damping, one must use an output-only-based algorithm or only use output measurements 

outside the near field.  Another bottom line is that the observations made here were 

enabled by proper schooling in the vibrations of continuous systems and the duality of 

free vibrations with wave motion in a closed domain. 
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1. Introduction 

The present paper focuses on locally anisotropic structures which are often part of natural compounds. Natural 

compounds have local anisotropic properties distributed optimally throughout the compound to perform more 

effectively than homogenously anisotropic materials. It may then be hypothesized that if local anisotropy can 

be exploited in structural design, it would be possible to design more effective engineering structures. To 

realize local anisotropy with curvilinear fibers, fiber reinforced composites would be highly appropriate, 

especially with an innovative method that has recently been developed to produce composites with curvilinear 

fibers. The method is termed automated tow-placement technology [1]. An optimum curvilinear fiber shape is 

developed under continuous constraints on the fiber orientations, where the fiber shapes are expressed as 

projections of contour lines on a cubic polynomial surface. The results show that plates with curvilinear fibers 

result in higher fundamental frequencies than plates with parallel fibers.  

 

2. Fiber shape expression and optimization problem 

Curvilinearly shaped fibers are defined by projected contour lines of a cubic polynomial function f(x,y) here, 

as 

2 2

00 10 01 20 11 02

3 2 2 3

30 21 12 03

( , )f x y c c x c y c x c xy c y

c x c x y c xy c y

     

     

(1) 

where cij (i, j = 0, 1, 2, 3) are shape coefficients which determine the surface shape. An example of a surface 

and the corresponding curves is shown in Fig. 1(a) and (b).  

 

 

Fig. 1 Examples of (a) surface, (b) continuous fibers, and (c) discrete fiber orientations. 

 f (x ,y)

(a) surface (b) curv ilinear shapes
(b) continuous (c) discrete(a) surface
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The originally developed FEA code to accept curvilinear fiber shapes is employed to calculate natural 

frequencies of the present composite plate. The FEA is performed with an isoparametric eight-node plane 

element based on the first-order shear deformation theory (FSDT)
 
[2] to enable an analysis of the variously 

shaped plates. In the FEA, continuous fibers are discretized and the fiber orientation angles for each element 

are calculated using the co-ordinates of the center of the element by 

1

,

/
( , ) tan ( )

/
c c

c c

x x y y

f x
x y

f y
 

 

 
 

 
   (when ∂f / ∂y = 0, θ = 90º)

 

(2) 

where (xc, yc) are the co-ordinates of the center of the element. The angles are in the same direction as the 

tangents to the surfaces in the horizontal plane, and assume straight fibers and a constant volume fraction in 

the element but different angles for each element (Fig. 1(c)). It is possible to describe different shapes of 

surfaces and curvilinear fibers by varying the values of the shape coefficients cij.  

The present problem limits plates to symmetric K-angle-ply laminates [(±θ)K/4]s where the “+layer” means 

that the layer has fiber shapes determined in the optimization problem, and the “–layer” is the layer with fiber 

shapes symmetric to the “+layer” with respect to the horizontal line and becomes –θ in Eq. (2). Thus it is 

sufficient to design one layer in this problem formulation. The objective is maximizing the fundamental 

frequency Ω1, and the corresponding shape coefficients cij for the optimum fiber shapes are the design 

variables. This problem can be stated as 

1

10 01 20 11 02 30 21 12 03

Maximize

Design variables

Subject to

:

: , , , , , , , ,

: 1 1 ( , 0,1, 2, 3)ij

c c c c c c c c c

c i j



     

(3) 

The increment of cij is 0.1 in the range from -1 to 1, and there are 21 possible values for each shape coefficient. 

These values were determined by previous numerical experiments. As an optimizer, simple genetic algorithm 

(SGA) method is used with the two point crossover, mutation, and elitist tactics.  

 

3. Numerical results  

Figure 2 shows optimized results for the four boundary conditions, with letters showing the states of the 

edges: F for Free, S for simply supported, and C for clamped edges, and the letter P represents a point support 

in the counterclockwise direction starting from the left edge of the plate. They present a simply supported 

plate (Ex. 1 SSSS), a fully clamped plate (Ex. 2 CCCC), a plate with unsymmetrical boundary conditions 

including two free edges (Ex. 3 CSFF), and a plate with a point support at the free corner of CSFF (Ex. 4 

CSF(P)F). Only the “+ layer” is shown as overlapping views would make it difficult to find fiber continuity in 

Fig. 2. 

   Plots of the fundamental frequencies of the plates here and conventional plates are presented in Fig. 3. The 

typical lay-up configurations, [(0º)4]s, [(0º/90º)2]s, [(±60º)2]s, [(±45º)2]s and [(±15º)2]s, are shown in Fig. 3 for 

comparison. Except for the purely simply supported plates (Ex. 1), the plates with curvilinear fibers result in 

higher frequencies than all conventional plates with typical lay-ups. Even in the case of Ex. 1, the result is 
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very similar frequencies to the plates with parallel fibers. This is because the optimum fiber shapes for Ex. 1 

show quite similar shapes to [(±45º)2]s, this establishes that parallel fibers have advantages over curvilinear 

fibers for simply supported plate. However, the other boundary conditions give clearly curved fiber shapes 

and higher fundamental frequencies than the parallel fibers. 

 

 

Fig. 2 Optimum curvilinear fiber shapes (+ layer) for the four examples of the plates  

and the corresponding vibration modes. 

 

 

Fig. 3 Frequencies for the present plates with optimum curvilinear fibers 

 and conventional plate with parallel fibers. 
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INTRODUCTION 

Laminated composite materials are prevalent in engineering systems, particularly in aeronautical vehicles 

and aerospace structures. However, the abrupt change in material properties across the interface between 

material layers can cause large interlaminar stresses even some delaminations. Functionally graded materials 

(FGMs) are found to overcome these adverse interlamination stress and delamination effects associated with 

conventional laminated composite builds. Material properties of FGMs vary continuously by gradually 

changing the volume fraction of constituent material properties. FGMs have been extensively explored in the 

last two decades along a variety of interdisciplinary fronts, including electronics, chemistry, optics, 

biomedicine, aeronautical and mechanical engineering. 

A novel examination of the three-dimensional (3-D) vibrations of rectangular FGM plates having cracks 

is summarized. Employing 3-D theory of elasticity and a variational Ritz methodology, new hybrid series of 

mathematically complete orthogonal polynomials and crack functions as the assumed displacement fields are 

proposed to enhance the convergence of numerical solutions for vibration frequencies of a cracked 

rectangular FGM plate. The proposed admissible hybrid series properly describe the (1/ )r 3-D stress 

singularities at the terminus edge front of the crack, allowing for displacement discontinuities across the 

crack sufficient to explain the most general 3-D “mixed modes” of local crack-edge deformation and stress 

fields typically seen in fracture mechanics. The correctness and validity of the vibration analysis are 

confirmed through comprehensive convergence studies and comparisons with published results for 

homogeneous and FGM rectangular plates with cracks based on various plate theories. The locally effective 

material properties are estimated by a simple power law and the effects of the volume fraction on the 

frequencies are investigated. Frequency data, mode shapes and nodal patterns are shown for FGM 

rectangular plates having cracks with varying crack size effects implying flaw-size influence in FGM plate 

vibration, including crack length ratios, crack positions, and crack inclination angles (α). 

 

METHODOLOGY AND RESULTS 

Consider a cracked rectangular FGM plate as shown in Fig. 1. An appropriately enhanced Ritz 

procedure proposed herein yields accurate solutions of cracked FGM plate vibrations with the accuracy and 

efficiency of the approximate solutions largely depending on the appropriate choice of admissible functions 

for the three displacement components, Ui (x, y, z). A hybrid series of mathematically complete admissible 

orthogonal polynomials and newly-developed crack functions accounting for stress singularities at the front 

of the crack, while permitting displacement discontinuities across the crack, are used to approximate each of 

Ui (x, y, z). The displacement amplitude functions are expressed as 

icipi ÛÛU 
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where ipÛ
 
is an assumed finite series of mathematically complete polynomials; and icÛ  is an assumed 

finite series of crack functions, supplementing the assumed polynomial series, ipÛ , to appropriately 

describe the essential singular stresses at the crack front and displacement discontinuities across the crack. 

Orthogonal polynomials are adopted to expand ipÛ  as 
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where )()( xP i

j and )()( yQ i

k  are orthogonal polynomials in the x and y directions, respectively, and are 

generated by using a standard Gram-Schmidt orthogonalization process. They satisfy the geometric boundary 

conditions along the four side faces of a rectangular plate. 

To enhance the convergence accuracy of the proposed Ritz procedure due to the presence of a crack, 

stress singularities at the front of the crack and displacement discontinuities across the crack are considered 

in constructing admissible crack functions, icÛ . For a plate with a side crack, icÛ  is expressed as  
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where )( z,y,xgi  (i =1, 2, 3) are boundary functions to satisfy the geometric boundary conditions for Ui on 

the plate faces. For a plate with an internal crack, icÛ  is expressed as 
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Table 1 contrasts 2( / ) /b h E   obtained by various theories for SSSS homogeneous cracked square 

plates with horizontal side cracks (α = 0°) having various length ratios (d/a) and positioned at cy /b = 0.5. As 

expected, the differences between the frequencies of very thin plates (h/b = 0.002) obtained based on the 

classical thin plate theory and Mindlin plate theory are negligible, and both are consistent with the present 

3-D elasticity-based solutions up to at least three significant figures. For the thin (h/b = 0.05) and moderately 

thick (h/b = 0.1) plates, the 
2( / ) /b h E 

 
solutions based on the classical thin plate theory are 

considerably stiffer than the solutions based on Mindlin plate theory and present 3-D elasticity theory, 

especially for moderately thick plates (h/b = 0.1) and for the higher modes. The solutions based on Mindlin 

plate theory are slightly over-correcting in reducing the classical thin plate theory solutions for transverse 

shear effects, and the Mindlin plate theory solutions are smaller than the present 3-D elasticity-based 

solutions. Percentage differences between the shear deformable Mindlin 
2( / ) /b h E   solutions and the 

present 3-D
 
solutions are less than 1%. Generally speaking, this 1% difference does not significantly increase 

with increasing crack length ratio (d/a). 
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Fig. 1 A rectangular functionally graded material (FGM) plate having a crack showing position 

coordinates, crack length, and crack orientation 

 

 

Table 1. Comparisons of 2( / )b h E  predicted by various theories for homogeneous cracked, SSSS 

square plates with different thickness ratios (h/b = 0.002, 0.05, 0.1)  

ad /  bh /  
  Mode   

1 2 3 4 5 

0.2 

 

0.002 

 

[5.961] [14.89] [14.93] [23.84] [29.62] 

(5.961) 

{5.961} 

(14.89) 

{14.88} 

(14.92) 

{14.93} 

(23.84) 

{23.84} 

(29.62) 

{29.62} 

 

0.05 

 

[5.961] 

(5.900) 

{5.905} 

[14.89] 

(14.54) 

{14.56} 

[14.93] 

(14.55) 

{14.57} 

[23.84] 

(22.91) 

{22.95} 

[29.62] 

(28.29) 

{28.35} 

 

0.1 

 

[5.961] 

(5.750) 

{5.758} 

[14.89] 

(13.66) 

{13.72} 

[14.93] 

(13.69) 

{13.74} 

[23.84] 

(20.87) 

{20.99} 

[29.62] 

(25.41) 

{25.57} 

0.4 

 

0.002 

 

[5.810] [14.46] [14.60] [21.57] [27.91] 

(5.810) 

{5.810} 

(14.46) 

{14.47} 

(14.60) 

{14.60} 

(21.56) 

{21.57} 

(27.91) 

{27.91} 

 

0.05 

 

[5.810] 

(5.725) 

{5.730} 

[14.46] 

(13.90) 

{13.92} 

[14.60] 

(14.23) 

{14.25} 

[21.57] 

(20.48) 

{20.54} 

[27.91] 

(26.49) 

{26.55} 

 

0.1 

 

[5.810] 

(5.562) 

{5.572} 

[14.46] 

(12.84) 

{12.90} 

[14.60] 

(13.39) 

{13.43} 

[21.57] 

(18.54) 

{18.66} 

[27.91] 

(23.83) 

{23.97} 

Note: [ ]: classical thin plate theory; ( ): Mindlin plate theory; { }: present 3-D elasticity-based solution 
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Consideration of the linear vibration characteristics of unconstrained rotating thin disc leads to the 
important concept of “critical speeds”. These critical rotational speeds are of interest because they 
correspond to the situation where a natural frequency of the rotating disc, as measured by a stationary 
observer,  is  zero.  Such  speeds  correspond  physically  to  the  speeds  at  which  a  travelling 
circumferential  wave,  of  shape  corresponding to  the  mode  shape  of  the  natural  frequency being 
considered,  travel around the disc in the absence of applied forces. At such speeds, according to 
linear theory, the blade may respond as a space fixed stationary wave and an applied dc force may 
induce a resonant condition in the disc response.  Thus, in general,  linear theory predicts  that  for 
rotating discs, with low levels of damping, large responses may be encountered in the region of the 
critical  speeds.  However,  large  response  invalidates  the  predictions  of  linear  theory  which  has 
neglected the nonlinear stiffness produced by the effect of in-plane forces.

In the present work experimental studies were conducted in order to measure the frequency response 
characteristics of rotating discs both in an idling mode as well as when subjected to a lateral force. 
The applied  lateral  forces  (produced by an air  jet)  were such as to  produce displacements  large 
enough that non linear geometric effects were important in determining the disc frequencies.

This paper presents the results of these experiments and compares them with analytical predictions 
based upon equations developed using Von Karman plate theory. The results show that in the case of 
finite disc displacements the frequency characteristics are significantly different to the linear case. In 
particular no critical speeds exist in the case of finite displacements.

The pertinent characteristics of linear theory predictions can be illustrated by reference to Figure 1. 
This  Figure plots  the relationship  between disc  natural  frequency,  as  measured by a  space fixed 
observer, and disc rotational speed for a steel disc of outer dia. 17”, inner dia. 6” and plate thickness 
0.050”. The disc is assumed to be axi-symmetric; clamped at its inner radius; and free at its outer 
radius.

Inspection of this Figure shows that at zero speed the disc has natural frequencies at approximately 
52, 52 and 61Hz. Where it can be shown that these frequencies correspond to mode shapes (0,1), 
(0,0)  and  (0,2).  Where  the  notation  (M,  N)  means  the  mode  has  M nodal  circles  and  N nodal 
diameters.  Further,  the  disc  has  three  lowest  critical  speeds  of  approximately  2400;  2700;  and 
2850rpm.At each of these speeds the linear analysis predicts that the disc has a natural frequency of 0 
Hz, whence a static force will produce a standing wave response.

At speeds other than zero it may be seen that each nodal diameter mode has two frequencies, 
one corresponding to  a  backward travelling  wave and one corresponding to  a  forward travelling 
wave. A critical speed occurs when the disc speed equals the speed at which a nodal diameter mode 
freely travels around the disc.
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Figure 2 shows the same plot as for Figure 1 but for the case where the disc is acted upon by a space 
fixed spring of stiffness 20lb/in. In this case the symmetry of the system is destroyed and at zero 
speed the natural  frequency of every nodal diameter mode is split  into two. In one case a nodal 
diameter passes through the location of the spring, and thus the frequency is the same as without the 
spring (and corresponds to the minimum frequency that the system can adopt), and in the other case 
the nodal diameters are such that the spring is at an anti-node giving rise to the maximum frequency 
that the system can adopt. 

Figure 1 Computed Variation of Natural Frequency with Speed 
for Symmetric Unconstrained Clamped Disc (Linear)

Figure 2 Computed Variation of Natural Frequency with Speed 
for a Spring Constrained Clamped Disc (k=20 lbf/in)

Figure 3 Experimental  Frequency  Speed Map -Clamped Disc 
Idling Response 

Figure 4 Experimental  Frequency  Speed Map -Clamped Disc 
Response to Air Jet Excitation
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EXPERIMENTAL RESULTS
Figures 3 and 4 show the results of the experimental run-up tests from dc to 4,000rpm, for the disc 
considered.

 In Figure 3 the excitation is low level broadband and in Figure 4 an air jet is applied to the rim of the 
disc of sufficient magnitude for non-linear effects to be significant.

From Figure 4 it may be seen that the nonlinear behaviour is significantly different to the linear 
behaviour contained in Figure 3. In particular, the critical speed characteristic evident in the linear 
response is missing in the nonlinear experimental results. As may be seen in Fig 4 the frequencies 
corresponding to the backward travelling waves do not continue to reduce until they have zero value. 
Instead, in the region of the linear critical speed, these frequencies level off and maintain a constant 
level as speed is further increased. In this case no reflected waves are evident. Further investigations 
indicate that at the frequency lock-in speeds a standing wave develops.

ANALYTICAL PREDICTIONS
Linear Results
In the case of the clamped inner boundary condition,  the agreement between the predicted linear 
frequencies at zero speed (Figure 1) and the measured values in Figure 3 is not so good. Further tests 
on free-free discs give better agreement. The reason for the difference between the measurements and 
the prediction is likely due to the inaccuracy of modeling the inner clamped boundary condition. The 
mathematical model assumes perfect fixity with a zero slope. In practice the clamping plate used in 
this case would not have provided full fixity and some degree of rotation would likely have occurred.

Nonlinear Results
Results of the nonlinear  analysis  will be presented at the conference.
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In a recent paper, Askes et al [1] proposed the simultaneous use of stiffness and inertia of 

large magnitude to model constraints in time domain analysis. From a frequency domain 

perspective, as stiffness and inertia have opposite effects on the natural frequencies, this 

seems counter-intuitive.  With increasing stiffness, the natural frequencies either increase or 

remain unchanged, whereas the opposite is true for inertia. However, it can be shown, 

through very simple illustrative examples, that the natural frequencies and modes of 

continuous systems can be found in this way, and that there are advantages in using both 

stiffness and mass simultaneously. 

The “artificial stiffness” method of Courant [2] has gone through some changes recently, 

thanks to some debate generated at the first ISVCS [3]. At this symposium, Ilanko proposed 

the use of masses, instead of stiffness, as a way to model constraints, so that true upperbound 

solutions to frequencies could be obtained using the Rayleigh-Ritz Method. However, with 

large masses, introduction of very low frequencies with modes which violate the constraints 

and the difficulty in selling the idea of enforcing continuity conditions with large masses that 

vibrated at the differential velocity of the connecting points, shifted the focus on a different 

strategy using “negative stiffness” instead of mass [4,5]. It may be worth noting here, that the 

idea of using negative stiffness occurred to the Lead Author, as a result of what he learnt 

from a mistake in the sign of a mass term in his PhD research [6,7]. The switching of the sign 

did not affect the results for the limiting case of a very large mass used as a test in verifying 

the accuracy of the computer program. This pointed to the fact that if the mass is sufficiently 

large as to prevent the motion of a point, then the sign of the mass (whether it is right or 

wrong) will have no effect on the frequencies. Using positive and negative stiffness, it is 

possible to determine and control any error due to violation of the constraints, but it is 

necessary to ensure that the magnitude of the stiffness is greater than the highest magnitude 
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of the critical penalty stiffness values associated with negative stiffness. Subsequently, the 

legitimacy of using positive and negative mass to modelling constraints was established for 

frequency analysis and it was also used successfully in time domain analysis [8-10]. However, 

it has been found that when using inertial type penalty parameters, while the higher modes 

converge well even with very small penalty masses, the magnitude of inertial penalty needed 

to enforce constraints at lower modes can cause 

numerical problems for some very high modes [11, 

12].  The most recently introduced bipenalty method, 

which has been developed for time domain analysis, 

seems to offer a solution that addresses all the 

problems listed above. By using both stiffness and 

mass at two carefully tuned combinations, it is 

possible to obtain bounded results for the natural 

frequencies of constrained 

system. 

Fig. 1 shows an Euler-

Bernoulli beam of length L, 

flexural rigidity EI and 

mass per unit length m, 

clamped at the left end and 

attached to a spring and 

mass at the right end. The 

stiffness of the spring is 

ps as where s= EI/L
3
 and 

p is the penalty parameter.  

The magnitude of mass is pm where m = s./r. The ratio r is the tuning ratio that changes 

the relative dominance of stiffness and mass. If r is very small then the system behaves as if it 

is inertially penalised and if r is very large it behaves like an elastically penalised system.  

With a four term assumed displacement of the form 



4

1

1

i

i

i xaf  in a Rayleigh-Ritz method, 

results were generated for various values for the tuning ratio r. Figure 2 shows the variation 

of the non-dimensional frequency parameter of the beam   4/12 )/(EImL   with the 

penalty parameter p for two special cases. The solid line shows the results for a stiffness 

Fig 1. Cantilever with spring-mass 

restraint 

 

pm 

ps 

Figure 2. Frequency parameter  vs 

penalty parameter p10log  for the propped 

cantilever. 
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dominated penalised system with 2

4r , and the dotted lines shows the results for an inertia 

dominated case with 2

1r , where i  is the ith frequency of the cantilever beam 

(unconstrained at the right end). It may be seen that the three natural frequencies of the 

propped cantilever are approached from opposite directions by the natural frequencies of the 

penalised system with the two different tuning ratios. The highest frequency of the stiffness 

dominated system and the lowest frequency of the inertia dominated system remain 

unchanged; these are in fact equal to the highest and lowest frequencies of the constrained 

system, respectively. The way to tune the penalty parameter and the reasons for this 

behaviour will be presented at the symposium. 
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Finite element analysis [1] has become the most widely used method in structural dynamics.  

Location of the natural frequencies of free vibration entails the solution of the linear eigenproblem 

  0DMK  2             (1) 

where  is the circular frequency and D  is the vector of nodal displacement amplitudes.  The static 

stiffness matrix K  and mass matrix M  are found by integration of expressions involving shape 

functions which are assumed to represent the internal displacements between the nodes of each 

element.  Such discretisation approximations may lead to inaccuracies, particularly when finding 

higher natural frequencies. 

 

In contrast, an exact dynamic stiffness matrix )(
~
K  can often be found by direct solution of the 

governing differential equations, resulting in the continuous transcendental eigenproblem 

0DK 
~

)(
~
              (2) 

which may be solved using the Wittrick-Williams algorithm [2].  The absence of discretisation 

approximations means that nodes are only required at joints of the structures, resulting in smaller 

problems and guaranteed accuracy for any natural frequency.  This approach has been successfully 

applied to the vibration, buckling and postbuckling analysis and optimum design of prismatic 

assemblies of rectangular plates made from metals and laminated composite materials [3].  The 

structure and its loading are assumed to be invariant in the longitudinal )(x  direction.  The further 

assumption that the vibration or buckling mode D
~

 varies sinusoidally in the x  direction satisfies 

simply supported end conditions for orthotropic structures with no shear load [4].  Otherwise a series 

of modes mD
~

 with sinusoidal half-wavelengths m  and dynamic stiffness matrices )(
~

mK  

 ,3,2,1m  is coupled using Lagrangian multipliers to enforce the end conditions and optional 

attachments to transverse supporting structures [5]. 

 

Figure 1 shows a rectangular plate 

OABC  with an embedded damaged 

region pqrs .  The damage might be 

delamination in a composite plate, but 

could be generalised to any region of 

modified stiffness, e.g. a cutout or 

patch.  Uniform damage extending 

over the whole length of the plate is 

easily modelled by modifying the 

stiffness of the strip PQRS  [6], while 

approximate smeared stiffnesses for 

PQRS  have been derived [7] which 

take account of the longitudinal 

position of pqrs . 
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Figure 1.  Rectangular plate OABC containing an 

embedded damaged region pqrs . 
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A new hybrid model is shown in Figure 2.  For simplicity, classical plate theory is assumed and in-

plane displacements are ignored.  The undamaged, prismatic regions OAQP  and SRBC  are together 

modelled continuously with dynamic stiffness matrices )(
~

mK  relating the lateral displacements w~  

and rotations x
~

 at the four (line) nodes  CBSRPQOA ,,,  to the corresponding perturbation forces.  

(Because of the assumptions made, the rotation y
~

 about the y  axis is given by xw  ~ .)  The 

remaining region PQRS  is not prismatic and is modelled using finite elements, with static stiffness 

matrix K  and mass matrix M . Rectangular elements are used, each having 12 degrees of freedom, 

namely w , x  and y  at each of four corner nodes, and employing appropriate polynomial shape 

functions [1].  The continuous and finite element models are coupled using Lagrangian multipliers to 

enforce the constraints 

ww ~  ; xx 
~

  ; xwy  ~          (3) 

at the locations denoted by solid circles along the boundaries PQ  and SR . 

  

Minimisation of potential energy [5] gives the transcendental eigenproblem 
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      (4) 

where  me   ,3,2,1m  and f  contain the coefficients of the constraint equations; LP  is the 

vector of Lagrangian multipliers; T  denotes transpose and H  denotes Hermitian transpose.  The 

Wittrick-Williams algorithm [5] gives the number of natural frequencies below a trial value of  as  

Figure 2.  Hybrid (a) continuous and (b) finite element model for rectangular plate 

OABC containing an embedded damaged region pqrs . 
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         rsssJJ
m

mm   RMKK
2

0 )}(
~

{)(         (5) 

Here {}s  denotes the sign count of a matrix, i.e. the number of negative leading diagonal elements 

of the upper triangular matrix obtained by standard Gaussian elimination; )(0 mJ  is the total 

number of member fixed-end natural frequencies with half-wavelength m  lying below  ; 

     T12H1~
fMKfeKeR


 

m
mmm         (6) 

and r  is the order of R .  It is assumed that there are no fixed-end natural frequencies of the 

individual finite elements below the largest frequency of interest. 

 

Proof of concept is demonstrated by the excellent convergence in Table 1, which shows non-

dimensional fundamental natural frequencies of a simply supported beam of length L3  and mass per 

unit length  .  The beam is divided into three portions of equal length L ; the flexural rigidity is EI  

in the two outer portions (which are modelled continuously) and  EI1  in the central portion 

(which is modelled using either n  =1 or 2 finite elements, or continuously to provide an exact 

comparator).  Here the continuous and finite element models can be combined into a single dynamic 

stiffness matrix, so the Lagrangian multiplier formulation of equation (4) is not required.  Numerical 

results using Lagrangian multipliers to model damaged plates will be presented at the Symposium. 
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Table 1.  Non-dimensional fundamental natural frequencies EIL4  of a damaged beam. 

Damage parameter   0.0 0.1 0.2 0.3 0.4 0.5 

Continuous + FE  1n  1.09721 1.06191 1.02220 0.97711 0.92531 0.86488 

Continuous + FE  2n  1.09666 1.06133 1.02159 0.97648 0.92465 0.86421 

Continuous 1.09662 1.06129 1.02156 0.97644 0.92461 0.86417 
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1. Introduction 

 

This paper presents a numerical method to investigate the frequency response of a rectangular 

plate. When we use the transfer matrix method (TMM) to calculate frequency response of 

plates, exciting force is limited to a line force and applicable object is also restricted. To 

expand the range of application of the TMM, we propose a method to calculate modal 

parameters from free vibration analysis by using the TMM. Modal mass is calculated by 

numerical integration from modal vectors. We have applied this method to calculate the 

response of plates subjected to a point force. Comparing the results obtained from the 

proposed method and finite element method, characteristics of the frequency response of both 

methods agree with each other. Calculation process of the proposed method has an advantage 

of computational efficiency.  

2. Transfer matrix method for a rectangular plate 

We can employ the TMM to solve vibration problems of the rectangular plate that is 

simply-supported along a pair of opposite edges. Figure 1 shows a rectangular plate and the 

coordinate system. We assume that the edges x=0 and x=La are simply-supported in this paper. 

Considering free vibration problem and employing the method of separation of variables for 

out-of-plane displacement w as )/sin( aa LxmwLw  . w  is the nondimensional displacement 

and m is half-wave number in x direction. Introducing nondimensional coordinate 
aLy /  

and employing the method of separation of variables for other variables in the same manner, 

governing equation of the plate is expressed as the state equation 

    )()( 


zUz 
d

d
,     (1) 

where  )(z  is the state vector that consists of variables expressing displacement, slope, 

moment and shear force, and [U] is the constant matrix determined by using frequency, 

material parameters of the plate and the half-wave number m. 
 

La

Lb

x

y ,
H



 
 

Fig.1 Rectangular plate and coordinate system 
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The state vector  )(z  can be expressed as     )0()()( zTz    by using the transfer 

matrix  )(T of the plate. Substituting this relationship into Eq. (1), the following equation 

can be obtained 

           .)()( 


TUT 
d

d
 (2) 

The matrix  )(T  is obtained by integrating Eq. (2) numerically with the starting value 

[T(0)]=[ I ] (identity matrix). Considering boundary conditions along edges y=0, Lb, we can 

derive the frequency equations and obtain natural frequencies and modal vectors. 

3. Modal parameters 

In this section, we calculate the modal mass by using the vibration modes obtained by the 

TMM for the plate. We specify the half wave number m in x direction for the TMM. The 

vibration mode obtained by the TMM expresses the displacement distribution in y direction. 

 
Displacement ),,( tyxw of the plate is expressed as  





j

jjj tqyYxXtyxw )()()(),,( , (3) 

where )(xX j and )(yY j are eigenfunctions and )(tq j is time function. Modal mass mi is 

obtained by 











  

baa b L

i

L

i

L L

iii dyyYdxxXHdxdyyYxXHm
0

2

0

2

0 0

22 )()()()(  , (4) 

where  and H are the density and thickness of the plate, respectively. Trapezoidal integration 
is applied to calculate the integrations with number of divisions na in x direction and nb in y 
direction as follows: 








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
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 
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a
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1

22

1

0

2

2
)( , (5) 
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 


b
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n

k
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b
L

i

YY

n

L
dyyY

1

22

1

0

2

2
)( . (6) 

Function )(xX i  is the sinusoidal function in the TMM, and then we can simplify the 

integration as follows: 

)3,2,1()/(sin)(
0

2

0

2   mdxLxmdxxX
aa L

a

L

i  . (7) 

Modal rigidity is obtained by  

iii mk 2 . (8) 

Once we calculate eigenvalues and eigenfunctions from the free vibration analysis, responses 

of the forced vibration are calculated by using modal parameters. 

 

Equation of motion under normalized coordinate system is expressed as 

fkδδcδm   , (9) 

where m, c, k are matrices of modal mass, modal damping and modal rigidity, respectively. 

External force vector f is obtained as follows, 
tjT e 

FΦf  , ],,,[ 321 nΦΦΦΦΦ  ,  (10) 

where F is the external force vector under the physical coordinate system, is frequency of 
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the external force and is the modal matrix that is composed of modal vector i. We can 

specify the applied position of the external force by using the point of division of the transfer 

matrix. Substituting Eq. (10) into Eq. (9), i-th element of displacement vector can be obtained 

as 

22

1

iii

T

i
jm 





FΦ

,  (11) 

where i is i-th natural frequency and i is coefficient of i-th modal damping. Response 

vector on physical coordinate is obtained by  

δΦX  .  (12) 

4. Simulation and discussion 

Figure 2 shows convergence characteristics of natural frequencies of the plate 

simply-supported along all edges. Dimensions of the plate are La=0.3 m, Lb=0.2 m, H = 5.010
−4 

m. It seems enough accurate if we use more than 50 divisions.  

 

Figure 3 shows dimensions and excitation positions E1 and E2 of a rectangular plate. We can 

specify the arbitrary position in x direction because the displacement in x direction is 

expressed by using sinusoidal function. Figure 4 and 5 show resonant responses of the plate 

subjected to a point force of 0.1N at black dot with each natural frequency. Numbers in the 

parentheses denote the half-wave number in x and y directions of the corresponding mode 

shape of vibration.  In the cases of (1, 2) and (2, 1) modes of Fig.5, any vibration is not 

excited on the plate because the exciting point E2 is on the nodal line of each mode.  

 

     
  
 

 

 

        
 

 

Fig.2 Convergence characteristics of natural  

frequencies (SSSS, m=1) 

Fig.3 Excitation positions of the rectangular 

 plate 

Fig.4 Resonant responses of simply-supported  

rectangular plate (SSSS, E1) 
Fig.5 Resonant responses of simply-supported  

rectangular plate (SSSS, E2) 
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Approach of a Mode Shape Function to Analyses on Nonlinear Vibrations of a Stepped Beam 
 

Ken-ichi NAGAI, Shinichi MARUYAMA, Katsuya ISHIGAMI and Ryusuke KOBAYASHI 
Department of Mechanical System Engineering, Graduate School of Engineering,  

Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, JAPAN, kennagai@gunma-u.ac.jp 
 
1. Introduction   Recently, technology of a micro electro-mechanical system (MEMS) has been 
developed drastically.  Micro devices such as an acceleration pickup and an optical scanner are 
widely utilized. These devices are composed with elements of thin elastic structures. The elements 
have complicated shape with discontinuous cross section like a stepped beam or combined 
configuration of beam and plate. Dynamical responses of the elements are excited by an external 
force. Clear and large-amplitude responses of the elements are required. It is of practical importance 
to analyze nonlinear responses of beam and plate.  
    Introducing the mode shape function, which has been proposed by the senior author, analytical 
procedure is presented on nonlinear vibrations of a stepped beam. The stepped beam is divided into 
a few segments with different cross sections. The mode shape function is expressed with the 
product of truncated power series and trigonometric functions. The function is infinitely 
differentiable function of class C∞  with the coordinate variable. The function satisfies the boundary 
conditions and continuity conditions with higher derivatives at connecting points of the segments of 
the stepped beam. First, linear natural frequencies and corresponding modes of vibration of the 
stepped beam are calculated with the similar procedure of the finite element analysis. Based on the 
coordinate functions of linear combination of the vibration modes and applying the Galerkin 
procedure, the nonlinear governing equations of the stepped beam is reduced to the nonlinear 
ordinary differential equations of motion in a multiple-degree-of-freedom system. 
 
2. Mode Shape Function   The authors have analyzed nonlinear vibrations of beams and arches(1),(2) 
with linear geometrical boundary conditions, of which ends are simply-supported or clamped. In the 
analyses, the non-dimensional deflection of the beams ŵ(ξ,τ )  are assumed with the linear 
combinations of the mode shape function ζ i (ξ)  as follows: 

ŵ(ξ,τ ) = b̂j (τ )ζ j (ξ),
j
∑ ζ j (ξ) = ej (ξ) f j (ξ), ( j = 1,2,3,...)    (1) 

 
 
ej (ξ) = cos( j −1)πξ, f j (ξ) = cjkξ

k−1

k=1

5

∑ , (ξ = 0 ∼ 1)    (2) 

where ξ , τ  and b̂j (τ )  are the non-dimensional coordinate of the beam, the time and unknown time 
function. In the above equation, the trigonometric function ej (ξ)  can set the number of nodes 
corresponding to the order of vibration mode j . The coefficients cjk  in the truncated power 
series f j (ξ)  are chosen to satisfy the both geometrical and dynamical boundary conditions. 
    Moreover, the mode shape function has been also applied to a vibration of a cantilevered beam(3) 
and to nonlinear vibrations of beams with nonlinear dynamical boundary conditions, e.g., a 
post-buckled cantilevered beam of which free end is constrained by a stretched string(4). 
Furthermore, the nonlinear vibrations of a post-buckled L-shaped beam were analyzed(5). In these 
analyses, the trigonometric function ej (ξ)  in the mode shape function is modified as follow:  

 ej (ξ) = cos p1 jπξ + qj sin p2 jπξ, f j (ξ) = cjkξ
k−1

k=1

5

∑     (3) 

where the coefficients p1 j , p2 j  and qj  are appropriately chosen to set the location of nodes. Based 
on the mode shape function, ordinary linear/nonlinear differential equations of motion in a 
multiple-degree-of-freedom system are derived by the modified Galerkin procedure. 
 
3. Analytical Procedure   To analyze nonlinear vibrations of a stepped beam, as shown in Fig.1, in 
which cross section changes discontinuously at several positions, the beam is divided into N  
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segments. To obtain accurate results, assumed function should be infinitely differentiable and 
satisfies the continuity conditions of deflection, gradient, bending moment and shearing force at the 
boundary of neighboring segments. The deflection in each segment is assumed with the mode shape 
function. The deflection in the whole region of the beam is expressed with the global coordinate as:  

 
ŵ(ξ,τ ) = b̂j (τ )Z j (ξ),

j
∑ ( j = 1,2,3,...), (ξ = 0 ∼ 1)     (4) 

where, Z j (ξ)  denotes the coordinate functions composed with the mode shape function as: 

 Z j (ξ) = ζ jn (ξn )R(ξ,ξ[n−1],ξ[n] ),
n=1

N

∑ ξn = dn[ξ − (ξ[n−1] + ξ[n] ) / 2], dn = (ξ[n] − ξ[n−1] )
−1 (5 a,b) 

 
  
ζ jn(ξn ) = cnjpq (2ξn )q−1 cos( p −1)π (ξn +1 / 2)

q
∑

p
∑ , ( p = 1,2, q = 1,...4)  (5 c) 

The function, ζ jn (ξn )  is the mode shape function of the j –th mode defined by the local coordinate 
in the n –th segment ξn  from ξn = −1 / 2  to ξn = 1 / 2 . The symbol  

cnjpq  is the unknown coefficients. 
The function R(ξ,ξ[n−1],ξ[n] )  implies the rectangular window within the n –th segment from ξ[n−1]  to 
ξ[n]  in the global coordinate. The nonlinear governing equations of the stepped beam, neglecting the 
axial inertial force, are shown with the Hamilton’s principle as: 

 

1

dn
ρnAnAn (ξn )ŵ,ττ −dnm̂xn ,ξnξn −dn (n̂xŵ,ξn ),ξn

⎡
⎣⎢ξn =−1/2

ξn =1/2

∫
⎧
⎨
⎩n=1

N

∑τ0

τ1

∫

−
1

dn
ρnAnAn (ξn ) ps + pd cosωτ( )⎤

⎦⎥
δŵdξn + q̂xnδŵ[ ]−1/2

1/2 − dnm̂xnδŵ,ξn[ ]−1/2
1/2 ⎫

⎬
⎭
dτ = 0

(6 a) 

 

n̂x =κ ue +
dm
2
(ŵ,ξm

2 −w0 ,ξm2 )dξm
ξm=−1/2

ξm=1/2

∫
m=1

N

∑⎧
⎨
⎩

⎫
⎬
⎭

κ =
1

dmEmAmγ mm=1

N

∑⎧⎨
⎩

⎫
⎬
⎭

−1

, γ m = Am (ξm )−1dξm
−1/2

1/2

∫{ }−1
    (6 b) 

m̂xn = −dn2EnInIn (ξn ) ŵ,ξnξn −w0 ,ξnξn( ), q̂xn = dnm̂xn ,ξn +dnn̂xŵ,ξn   (6 c,d) 
In Eq. (6 a), from the first to forth terms correspond to the inertia force, the restoring force, the 
lateral force due to the axial force n̂x  and the external force, respectively. Eq. (6 b) denotes the axial 
force which includes the nonlinear terms of deflection ŵ,ξm

2  and initial axial displacement ue  of a 
beam end. The symbol w0  implies the initial lateral deflection of the beam. Eqs. (6 c) and (6 d) 
denote the bending moment m̂xn  and the restoring force, respectively. 
    Based on the linearized governing equation (6 a), the modes of linear vibration are determined. 
Choosing deflection, gradient, bending moment and shearing force at the both ends of the segment 
as the unknown variables, the unknown coefficients   

cnjpq , ( p =1,2, q =1,...4)  in the mode shape 
function Eq. (5 c) are expressed with unknown eight variables in one segment. Following to a 
similar manner of the finite element procedure, the modes of linear vibration are determined. 
    The vibration modes composed by the mode shape functions in each segment are used as the 
coordinate functions Z j (ξ)  in the nonlinear governing equations for static deflections w(ξ)  and 
dynamic responses  w(ξ,τ ) = w(ξ,τ ) − w(ξ) . It is noteworthy that number of coordinate functions in 
the nonlinear analysis can be drastically decreased compared with the degrees of freedom in the 
foregoing calculation of linear vibration modes.  
 

 
w(ξ), w ξ, τ( )⎡⎣ ⎤⎦ = bj , bi τ( )⎡⎣ ⎤⎦Z j (ξ)

j
∑      (7) 

Applying the Galerkin procedure to the static equilibrium equation of the beam, the following 
simultaneous nonlinear cubic equations in terms of bj  are obtained as follows. 
 Ĉij b j

j
∑ + Êijkl b j bk bl

l
∑

k
∑

j
∑ − F̂i − psĜi = 0, (i, j,k,l = 1,2,...)   (8) 

The equation of motion in terms of the dynamic response  w(ξ,τ )  is also transformed to ordinary 
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differential equations in multiple-degree-of-freedom system. Furthermore, the ordinary differential 
equations are transformed to the standard form in terms of normal coordinates bj (τ )  corresponding 
to the linear natural modes of vibration ζ j ξ( )  at the static equilibrium position of the stepped beam 
as follows.  
 bi ,ττ +2εiω ibi ,τ +ω i

2bi + Dijkbjbk
k
∑

j
∑ + Eijklbjbkbl

l
∑

k
∑

j
∑ −Gi pd cosωτ = 0  (9) 

Dynamic responses are calculated with the harmonic balance method or the numerical integration. 
The foregoing analysis can be named as the nonlinear finite segment analysis (NLFSA). 
 
4. Results and Conclusion   Table 1 shows the convergence of the non-dimensional natural 
frequencies of a uniform beam simply-supported at both ends. The results divided into two 
segments of the beam agree well with the exact results to fourth modes of vibration. Figs. 2 and 3 
show the natural frequency and the corresponding modes of vibration of a stepped beam with a 
rectangular cross section. The thickness h2  of the beam within the region from ξ = 0.4  to ξ = 0.6  
is changed compared with uniform thickness h1 . As the thickness h2  is increased, the natural 
frequencies increase first, and then decreases related to the increase in the mass and the bending 
rigidity of the beam. Fig.4 shows the nonlinear steady-state response of stepped beams clamped at 
both ends. The frequency response curves correspond to the characteristics of restoring force of a 
hardening spring. As the thickness h2  is increased, the frequency response curve approaches 
slightly to that of linear case because of the drastic increase in the mass of the stepped beam. 
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Fig. 1 Dynamical model of a 
stepped beam 

1 9.8696 39.477 90.214 148.44 …..
2 9.8696 39.478 88.826 157.91 247.34
3 9.8696 39.478 88.826 157.91 246.74
4 9.8696 39.478 88.826 157.91 246.74

Exact solution 9.8696 39.478 88.826 157.91 246.74

natural frequencynumber of
segments 1ω 2ω 5ω4ω3ω

Table 1 Natural frequencies of a uniform 
beam simply-supported at both ends 
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Fig. 2 Natural frequencies of a 
stepped beam (simply-supported) 
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Fig. 3 Linear vibration modes of a stepped 
beam (simply-supported) 

Fig. 4 Nonlinear frequency response curves of 
a stepped beam (clamped) 
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1. Introduction 

Free vibration of laminated composite shallow shells with variable surface shapes and lay-up 
configurations is analyzed. The semi-analytical Ritz solution is used in a simple genetic algorithm to optimize 
the frequency with respect to surface shapes and lay-ups. The shell shape is defined by a cubic polynomial and 
this makes it possible to express the shell shape with variable curvature radii by varying the value of 
coefficient in each term. The coefficient and the lay-up configuration of the laminated shell are directly 
employed as design variables, and constraints are imposed on the coefficients and curvature radii to keep the 
present shells being shallow. In numerical examples, the present analysis gives results to agree well with 
experimental and finite element analysis results. It is demonstrated that the obtained optimum solutions result 
in higher fundamental frequencies than the shells with typical shapes and lay-up configurations. 

 

2. Analysis of laminated shallow shells with variable curvature 

The Ritz method is used to obtain the natural frequencies of the shell with variable curvature. For a shell 
geometry shown in Fig.1, the surface geometry is expressed [1] by a cubic polynomial as 

2 2 3 2 2 3
20 11 02 30 21 12 03( , )x y c x c xy c y c x c x y c xy c yφ = + + + + + +    （1） 

where cpa (p, q = 0, 1, 2, 3) are coefficients to determine the surface geometry.  
Under the assumption that the slope of surface changes moderately, i.e. 
 (∂�/∂x)2 = (∂�/∂y)2 = 0, then the curvature is given by 

20 30 21 02 12 03 11 21 12
1 1 12( 3 ), 2( 3 ), 2 2

x y xy

c c x c y c c x c y c c x c y
R R R

= + + = + + = + +
  

（2） 

                 

                                             Fig. 1 The coordinate systems O – xyz for the present shell. 
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In applying the Ritz method, one has to formulate the strain and kinetic energies, and the strain energy is given by 

s bs bV V V V= + +  （3） 

where Vs is the energy due to stretching motion, Vbs is to coupling motion between stretching and bending and Vb is 

to bending motion [2]. After applying the minimizing procedure, one gets a frequency equation as 

11 12 13 11
2

12 22 21 22

13 21 33 33

0 0
0 0 0
0 0

ij

kl

st

k k k m P
k k k m Q
k k k m R

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎧ ⎫
⎜ ⎟⎪ ⎪⎢ ⎥ ⎢ ⎥−Ω =⎨ ⎬⎜ ⎟⎢ ⎥ ⎢ ⎥

⎪ ⎪⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎩ ⎭⎝ ⎠  （4） 

where kij and mij (i, j = 1, 2, 3) are elements of the stiffness and mass matrices, and Pij, Qkl and Rst are undetermined 

coefficients which appear in displacement functions. Solving the eigenvalue problem, the eigenvalue gives values of 

natural frequencies in non-dimensional form Ω=ωa2(ρ/D0)1/2 with D0 = E2h3/12(1 – ν12ν21) being a reference stiffness. 

3. Optimum design for the maximum fundamental frequency by a genetic algorithm 

The design variables are taken as the coefficients cpa (p, q = 0, 1, 2, 3) to represent the surface geometry and the 
fiber orientation angles θi (i = 1, 2, 3, 4) to represent the angles for upper (or lower) half layers of symmetrically 
laminated eight-layer shells. The object function is the fundamental frequency to be maximized. Then the 
optimization problem is formulated as 

1Maximizing :
Design variable : ( , 0,1,2,3), ( 1,2,3,4)

1 1 1Subject to : 0.20 0.20, 0.5 , , 0.5,

90 90

pq i

pq
x y xy

i

c p q i

c
R R R

θ

θ

Ω
= =

− ≤ ≤ − ≤ ≤

− ° < ≤ °                 (5) 

The optimization is made by using a simple Genetic Algorithm [3]. A gene of an individual (parameters of 
curvature and fiber angle) is represented by binary digits, and the parents are chosen by a roulette method. An elite 
tactics is used to suppress divergence of optimum solutions, and violation of the shallow shell theory is avoided by 
imposing the penalty on the object function. 

 

4. Numerical results  
  In numerical examples, the material constants for a typical CFRP material are used as 

             E1 = 138 [GPa], E2 = 8.96 [GPa], G12 = 7.1 [GPa], ν12 = 0.30 

An aspect ratio is taken as a / b = 1.0 (square planform)，and the thickness is a value of relatively thin as h / a = 
0.01. The notation for boundary conditions is given by a set of four capital letters of F (free), S (simple support) 
and C (clamp), starting from left-hand-side edge. This notation is introduced so that the image of the plate 
boundary condition is directly applicable, and therefore the in-plane boundary conditions of F and C are totally free 
and constrained, respectively. The S2 type condition is applied to S. Twelve different combinations are considered. 
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Figure 2 shows four examples CCCC, SSSS, FSFS and CFFF, chosen from the twelve sets of boundary 

conditions in the numerical study, on the optimum surface shapes and lay-up designs. In (a) totally clamped case 

(CCCC), the surface shape presents a part of sphere, and the lay-up is given by [1st (outer most) layer/ 2nd layer/ 

3rd layer/ 4th (inner most) layer]s= [15/-75/60/-30]s. It is noted that the first and second layers cross perpendicular 

each other, and likewise between the third and fourth layers. A similar surface shape is found for (b) SSSS, and it is 

suggested that the uniform boundaries, i.e. CCCC and SSSS, tend to give spherical surface as the optimum shape.  

In conclusion for the shells of square planform, when a pair of opposite edges is supported in (c) FSFS, the 

optimum shape becomes hyperbolic paraboloidal shape. In this case, the first and second layers take 90 degree 

(perpendicular to the simply supported edges) and inner third and fourth layers take different angles, unlike the flat 

plate with optimum angles all being 90 degree. It is also seen that in (d) CFFF, the optimum shape is similar to the 

hyperbolic paraboloidal shape. As for the experiment, the results will be presented in the oral presentation. 

 

   

 

Optimum surface Lay-up design Optimum surface Lay-up design  

(a) CCCC (b) SSSS 

  

  

Optimum surface Lay-up design Optimum surface Lay-up design 

(C)FSFS (d) CFFF 

Fig. 2 The optimum surface shapes and lay-up configurations for (a) CCCC, (b)SSSS, (c)FSFS and (d) CFFF 

of shallow square shells with symmetric 8-layers. 
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Abstract.  
The goal of this paper is to investigate and explain complex dynamic phenomena arising in circular cylindrical shells under 
base excitation. The experiment consists of a shell connected with a rigid body on the top and a base excitation. A violent 
resonant phenomenon is experimentally observed when a harmonic base excitation is close to the resonance of the first 
axisymmetric mode: saturation, energy spreading from low to high frequencies and nonstationarity are observed. A 
theoretical model is developed to reproduce the phenomenon; the model takes into account geometric shell nonlinearities 
and the interaction with an electrodynamic shaker, which provides the base excitation. 
 
Introduction  
Nowadays several commercial software allows to carry out static, stability and vibration analyses; however, regarding 
the shell dynamics, such kind of analyses are generally reliable in the linear filed, i.e. very small deformations. 
Problems like global stability, post-critical behaviours and nonlinear vibrations cannot yet be accurately analyzed with 
commercial software; on such fields there is need of further development of computational models. 
The problem under investigation was studied on linear basis in Ref. [1], where a new method, based on the nonlinear 
Sanders Koiter theory, was developed. Among the others, the method showed good accuracy also in the case of a shell 
connected with a rigid body; this method is the starting point for the model developed in the present research. 
A work strictly related with the present paper is due to Mallon et. al [2], they studied circular cylindrical shells made of 
orthotropic material, the Donnell’s nonlinear shallow shell theory was used with a multimode expansion for 
discretization (PDE to ODE). They presented also experimental results. The theoretical model considered also the 
shaker-shell interaction (it is to note that one of the first works concerning the interaction between an electromechanical 
shaker and a mechanical system is due to Krasnopol’skaya [3]). No good quantitative match between theory and 
experiments was found: saturation phenomena, beating and chaos were found numerically. However, this can be 
considered a seminal work due to the intuition that some complex phenomena can be due to the shaker shell interaction. 
In the present paper, experiments are carried out on a circular cylindrical shell, made of a polymeric material (P.E.T.) 
and clamped at the base by gluing its bottom to a rigid support. The axis of the cylinder is vertical and a rigid disk is 
connected to the shell top end. Nonlinear phenomena are investigated by exciting the shell using a shaking table and a 
sine excitation, the base excitation induces a vertical motion of the top disk that causes axial loads due to inertia forces. 
Such axial loads generally give rise to axial-symmetric deformations; however, in some conditions it is observed 
experimentally that a violent resonant phenomenon takes place, with a strong energy transfer from low to high 
frequencies and huge amplitude of vibration. Moreover, an interesting saturation phenomenon is observed: the response 
of the top disk was completely flat as the excitation frequency was changed around the first axisymmetric mode 
resonance. 
A semi-analytical approach is proposed for reproducing experimental results and giving a deeper interpretation of the 
observed phenomena. The model considers nonlinear Sanders-Koiter theory for the shell and the modelling of the 
interaction with the shaker. Comparisons between experiments and numerical results show a good behaviour of the 
model, numerical analyses furnish useful explanations about the instability phenomena that are observed 
experimentally. 
 
Experimental results  
The system under investigation is described in Figure 1; a circular 
cylindrical shell, made of a polymeric material (P.E.T.), is clamped at the 
base by gluing its bottom to a rigid support (a disk that is rigidly bolted to a 
shaker, such disk is technically called “fixture”); the connection is on the 
lateral surface of the shell, in order to increase the gluing surface, see Figure 
1. A similar connection is carried out on the shell top; in this case the shell 
is connected to a disk made of aluminium alloy, such disk is not externally 
constrained; therefore, it induces a rigid body motion to the top shell end.  
Material characteristics are directly measured with specific tests (Young 
modulus E and mass density ρ) or found in literature (Poisson ratio ν). 
The material parameters of the shell are the following: = 1366 !"

!! ; ! =

0.4;   ! = 46×10! !
!! ; the mass of the top disk is 0.82kg. The geometrical 

Figure 1. Experimental setup. 
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Figure 3. Amplitude frequency diagrams, 
numerical simulations, backward frequency 
sweep, shell vibration (mm). inward 
(negative) displacement and RMS(w) 

parameters are: mean radius ! = 43.88×10!!m, shell length ! = 96×10!!m, shell thickness ℎ = 0.25×10!!m, 
!
!
= 176, !

!
= 2.19.  

The fixture is bolted to a high power shaker (LDS V806, 13000N peak force, 100g maximum acceleration, 300kg 
payload, 1-3000Hz band frequency); such shaker is used to excite the shell from the base. 
Figures 2a-d represent the amplitudes of vibration in terms of acceleration (base and top disk vibration) or displacement 
(measured on the lateral surface of the shell, the vertical position is on the middle): during experiments the input voltage 
was sinusoidal (v(t)=v0sin(2π f t), v0=0.07V) and the frequency was moved step by step. Figure 2a shows that the 
maximum excitation (base motion) is between 8 and 14 g; from such data one can guess that there is a strong interaction 
between the shaker and the shell-disk; it is worthwhile to remember that the shaker control is open loop. 
 

a)  b)  

c)  d)  
Figure 2. Experimental results, harmonic excitation, amplitude of vibrations: a) base excitation amplitude 
(acceleration [g]), b) top disk amplitude (acceleration [g]), c) response on the shell mid-span (displacement 
[mm], positive inward), d) minimum response of the shell mid-span (displacement [mm], negative outward. 
 
The top disk vibration (Fig. 2b) increases as the first axisymmetric mode 
resonance is approached, from 333 Hz to 320 Hz the slope of the curve 
changes, when the excitation frequency is less than 322 Hz the top disk 
vibration amplitude remains flat up to 295 Hz; below such frequency the 
top disk response amplitude drops down. 
Figure 2c shows the maximum amplitude of vibration (positive for inward 
shell deflection). For excitation frequencies higher than 333 Hz the shell 
vibration is small. Reducing the excitation frequency below 333Hz, the 
shell vibration amplitude suddenly grow up, at 331.5 Hz the amplitude is 
0.57 mm, the increment is 1325%; such huge increment takes place in a 

narrow frequency band, 
i.e. from 333 Hz to 
331.4 Hz (about 0.5% 
frequency variation); 
these data show that a 
new dynamic 
phenomenon appears suddenly. Another jump in the shell response is 
observed from 325 Hz to 320 Hz. Reducing the excitation frequency 
to 300 Hz does not cause a big changing in the response, which 
remains almost flat; from 300 Hz to 296 Hz. 
Figure 2d shows the behaviour of the minimum shell vibration 
(negative means outward deflection). 
Figure 3 shows results of simulations carried out considering an input 
voltage equal to 0.09V, this value is larger than the excitation used 
during the experiments (0.07V); however, below such value the 
numerical model did not detect any dynamic instability. Simulations 
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are carried out by decreasing the excitation frequency. The 
behavior is coherent with the experimental results (see Figure 
2c), the numerical model overestimates the amplitude of 
vibration (experiments give 1.8mm max inward vibration) and 
underestimates the frequency range for which the instability 
Figure 4 shows that the boundaries are almost straight lines 
starting from 320 Hz, they behave similarly to the classical 
Ince-Strutt diagrams referred to the instability regions of the 
Mathieu equation, which is the paradigm for problems with 
time varying coefficients (parametric excitation). For such 
reason, the region where huge vibrations take place is named 
here “instability region”. Figure 4 suggests that the present 
phenomenon can be correlated to large in-plane loads, which 
are generated on the shell when the first axisymmetric mode 
undergoes to the resonance; such loads induce a parametric 

excitation on the 
shell like modes, 
which are high 
frequency modes, this is an explanation of the energy transfer from low to 
high frequency. The left and right boundaries of Figure 4 should 
theoretically touch each other at the bottom, depending on the damping; 
however, it was impossible to find experimentally such minimum. 
Figure 5 shows the stability boundaries obtained numerically by varying 
both the excitation source voltage and frequency; the boundaries are 
coherent with experiments, this is a further confirmation that the 
instability is due to a parametric resonance. The boundaries, obtained by 
increasing the excitation frequency (forward), are quite similar to the 
experimental boundaries; numerical boundaries are moved up with respect 
to the experiments, i.e. for the same excitation voltage the experimental 
instability region is wider. Backward boundaries are not presented for the 
sake of brevity. 
Figure 6 shows the modal amplitudes referred to the radial, this figure 

clarifies that, outside the instability region the sole active mode is the first axisymmetric one (mode m=1, n=0), with an 
almost negligible contribution of mode (5,0). When the instability takes place, the mode (1,7) is excited and absorbs the 
most of the vibration energy, mode (1,0) is still excited in such region, but it seems to be driven by the resonant mode 
(1,7); the third mode, that is strongly excited, is the mode (3,7), it is driven by the cubic nonlinearities of the system; the 
other modes are scarcely excited. The analysis of the mode components clarifies the energy transfer mechanism 
occurring during the dynamic instability: the energy inlet is provided at low frequency (close to the resonance of mode 
(1,0)), when the instability takes place there is an energy transfer to the high frequency mode (1,7) (the frequency of 
such mode is 793Hz). 

Conclusions 
Experiments clearly show a strong nonlinear phenomenon appearing when the first axisymmetric mode is excited: the 
phenomenon leads to large amplitude of vibrations in a wide range of frequencies, it appears extremely dangerous as it 
can lead to the collapse of the shell; moreover, it appears suddenly both increasing and decreasing the excitation 
frequency and is extremely violent.  
The theoretical model shows satisfactory agreement with experiments and clarifies the energy transfer mechanism from 
low frequency axisymmetric modes and high frequency asymmetric modes, confirming the conjecture arising by the 
experimental data analysis. The instability type is not yet clarified, time responses show no sub-harmonic response, 
therefore it seems that the instability regions is the secondary one. Once the model will be completely set and the 
agreement with experiments will be fully satisfactory, a deeper bifurcation analysis will be carried out to have a 
complete clarification.  
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Abstract 

Resonance excitation, the worst case for civil engineers, is of interest for mechanical engineers, as 

this can lead to an improved efficiency in some applications. The eigenfrequencies can be calculated 

from the material and geometrical parameters, however there is some uncertainty and they may 

vary with time. Thus a controller that adapts to the varying eigenfrequency is very attractive. Since 

the phase difference between excitation and response is an indicator for resonances, a Phase-Locked 

Loop (PLL) appears as an appropriate approach. With some modifications of the conventional PLL 

from radio electronics it is possible to track varying eigenfrequencies fast and robust in simulation 

and experiment. There are two categories of applications for resonance tracking: as actuator to 

obtain maximum power transmission and as sensor to extract information about the mechanical 

systems in terms of its mass-, damping-, stiffness- distribution or its boundary conditions. Typical 

structural models are continua with an infinite number of eigenfrequencies in contrast to 

concentrated parameter models with only one Degree of Freedom (1-DoF) and consequently only 

one eigenfrequency. The tracking of higher modes should also be taken into consideration, as it has 

potential for optimization, such as certain mode combinations in ultrasonic motors. 

As an example a clamped-clamped beam is investigated that is excited in its second eigenfrequency. 

There are two reasons for modeling the beam. First the Frequency Response Function (FRF) should 

be calculated to characterize resonances and secondly a state space model has to be built for further 

simulations. The beam including its actuation and sensing with Macro Fibre Composites (MFCs) is 

modeled according to the Bernoulli-Euler theory in consideration of prestress and outer damping 

[1,2]. The FRF is found by a harmonic ansatz and gives the transfer function between actuator 

moment (input) and sensor charge (output). It allows the finding of a good sensor location to excite a 

certain mode, while blinding out others. Further it reveals that a change of the prestress distinctly 

shifts the resonance peaks and the corresponding characteristic phase differences. These 

characteristic phase differences are 90° for all modes. Thus the approach is a modified PLL to 

perform the tracking. The conventional PLL [3] consists of a phase detector, a low-pass filter and a 

Voltage Controlled Oscillator (VCO). It is widely spread for the frequency demodulation in radio 

receivers, where it follows the frequency leaving a certain phase difference as controller offset. In 

terms of control theory it corresponds to a proportional controller. In order to follow the phase 

exactly with zero phase deviation, the proportional controller needs to be enhanced by an integral 

term, i.e. the phase must be controlled by a PI-controller as shown in Fig. 1. A key component is the 

phase detector. The choice is made for the Phase-Frequency-Detector (PFD), because it has a phase 

difference detection range from -2π…+2π and it has a theoretically infinite pull-in range. 
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Fig.1:  Structure of the PLL, modifications Fig.2:  Experimentally measured FRF of the beam  

are marked grey    unstressed (blue) and prestressed (green) 

The parameters of the low-pass filter and the controller are determined by simulations. There the 

PLL is combined with a state space model of the beam, which is formulated by a Galerkin scheme 

using the eigenfunctions of the homogeneous solution as trial functions. Both beam model and PLL 

components are linear systems, however the closed loop is a nonlinear control system due to the 

conversion between harmonic signals of the beam bending and phase signals inside the PLL. 

The experimental setup consists of a clamped-clamped beam made of spring steel. One clamp is 

fixed while the other has a translational degree, which can be set either by a thread drive in order to 

increase the prestress continuously or by a weight dropping for a step change. The piezoelectric 

transducers (MFC type) are bonded on front and back surface at a location that excites the second 

mode strongly and the third not. At first the FRF was captured. It is shown in Fig. 2. It confirms the 

predictions from the simulation, Note, the phase range is periodic -π…+π. Finally the tracking of 

continuous and step changes of the beam’s eigenfrequency was carried out. By inspection of the step 

response it was found that the closed loop can be approximated as a linear system of third order. 

This approximation turned out to be very helpful for fine-tuning of the controller parameters. 

Acknowledgement This work was supported by the Priority Program No.1156 “Adaptronics in Tooling 

Machines” of the German Research Foundation (DFG). 

 
References 
[1]  P. Hagedorn, A. DasGupta, Vibrations and Waves in Continuous Mechanical Systems (2007), 

p.150. 
[2]  A. Preumont, Vibration Control of Active Structures 2. Edition (2002), p. 51. 
[3]  R. Best, Phase-Locked Loops 6. Edition (2007), p. 20 

47



Extensional and flexural modes of vibration of single layer graphene  

sheets by lattice structure and continuum plate theories 
 

A. V. Singh and S. Arghavan 

Department of Mechanical & Materials Engineering,  

The University of Western Ontario, London ON N6A 5B9, Canada. 

E-mail:  avsingh@uwo.ca 

 
 

Introduction.  Novoselov and his colleagues [1,2] very recently demonstrated for the first time that a two 

dimensional free standing carbon structure can exist with stable atomic structure. It was termed as graphene 

and showed great potential for many future applications in nano-composites due to exceptionally superior 

mechanical, thermal and electrical properties. A graphene sheet is made of carbon atoms which are tightly 

packed into a 2D array of hexagonal cells and held together by covalent bond between adjacent carbon atoms.  

This molecular structure, therefore, allows to treat graphene as a plane lattice structure with honeycomb cells. 

Each side of a hexagonal cell represents the covalent bond between the carbon atoms and provides structural 

strength to keep atoms from getting apart. Each carbon atom in the analysis is considered as a nodal point at 

which the mass is assumed to be concentrated. Also, six degrees of freedom are assigned to each node. These 

correspond to three displacement and three rotation components about the Cartesian axes. A frame element 

joining two carbon atoms has axial, bending and torsional stiffness properties [3]. Studies based on this 

approach have been made and reported in the literature by a large number of researchers [3-6]. This paper 

deals with the free vibration analysis of various shaped graphene sheets by the lattice structure method and 

keeping this method as the basis, an equivalent continuum plate method of analysis is suggested.  

 

Methods of Analysis.  The geometric and material properties of the covalent bond suitably converted into 

engineering parameters are found in the literature. The followings are adopted in this study. 

    

Length representing the covalent bond L = 1.42 Å, circular cross sectional area A = 1.68794 Å
2
, 

moment of inertia I = 0.22682 Å
4
, Young’s modulus E = 5.488×10

-8
 N Å

-2
, shear modulus G = 

8.711×10
-9

 N Å
-2

, and the mass of the carbon atom mc = 1.9943×10
-26

 Kg. 
 
        The stiffness matrix of each 3D frame element is created in the element coordinate system first and then 

transformed into the structure coordinate system to obtain the assembled matrix [K] for the graphene sheet.  

To create the assembled mass matrix [M], the mass of the carbon atom is lumped at the displacement degrees 

of freedom of the nodes. In this manner, the equations: FxK   
for the static analysis and FxKxM   for 

the dynamic analysis are deduced. Here x and F are the displacement and force vectors respectively. The over-

dot represents differentiation with respect to time. A graphene is seen as lattice structure with voids 

throughout in each cell. This makes the lattice structure modeling method extremely desirable for very 

accurate results. Results from such analyses exhibit astounding similarity between graphene and continuous 

membrane (or plate) in overall static and vibrational behaviors. The drawback found in the lattice structure 

modeling is that a huge amount of computer capitals is required to produce accurate results even for a very 

small size graphene.  With this into consideration, a simplified equivalent continuum plate modeling method 

is proposed in the following.   

        In the present research, first the static analysis is performed on the lattice structure model of the 

rectangular graphene sheets with length a and width b. Using the displacement under the load, the overall 

Young’s moduli are calculated using classical closed form equations and also numerical solutions depending 

upon the shape of graphene sheets. This procedure is carried out separately for in and out of plane loading 

conditions. For the in-plane condition, the graphene is fixed at one edge and subjected to an axial load P on 

the opposite edge. This load P is equally divided to nodes. The displacement u0 at the loaded edge is found 

from the lattice structure method and then used along with thickness h = 3.4 Å in bhuPaE 0/  to obtain the 

value of E. Similarly, the lattice structure model of the rectangular graphene sheet is subjected to a lateral 

point load at the center and the deflection v0 under the load is calculated. The flexural rigidity of the 
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equivalent isotropic plate is then calculated from 0
2 / vaPD  , where the values of α are taken from the 

literature [7] and from it equivalent Young’s modulus E in bending is found from )1(12/ 23  EhD using  

h = 3.4 Å and the Poisson’s ratio 16.0 .  The natural frequency from the classical theory for the isotropic 

rectangular plate can be calculated by 22 2// ahDf ijij   in Hz using the mass density of ρ = 2250 Kg 

m
-3

. Indices i and j represent the numbers of half waves in a mode shape along horizontal and vertical axes, 

respectively. The values of ij  are readily available in [8] for different aspect ratios (b/a) and boundary 

conditions.  The equivalent Young’s modulus found in this manner can also be used along with the thickness 

and Poisson’s ratio, if the FEM is chosen for the analysis of plates other than rectangular.  

 

Numerical Examples.  A wide range of length (a) and width (b) namely;
 nm03.30nm46.2  a  

and 

nm39.60nm42.2  b  has been considered during the course of this study. The Young’s modulus of 

elasticity is found to be settling down to the range of 1.03-1.04 TPa for the extensional condition and it is 

completely consistent with the results published by others. The same for the bending condition converges to 

0.112 TPa. Study of the mass distribution was also done on the graphene sheet based on the number of carbon 

atoms in a particular case.  The mass density converges to a value of 2250 which is equal to the mass density 

for graphite.   

Table. Natural frequencies (THz) of rectangular SLGS clamped on all four sides. 

(a = 4.92 nm and b=4.97 nm)  

Mode 

Number 

Extensional Flexural 

Lattice 

Structure 

Continuum 

Plate 

Lattice 

Structure 

Continuum 

Plate 

1 2.6114 2.5489 0.1633 0.1641 

2 2.6184 2.5592 0.3287 0.3325 

3 3.4158 3.2215 0.3368 0.3366 

4 3.8986 3.7799 0.4903 0.4925 

5 4.3117 4.2423 0.5877 0.5959 

6 4.6838 4.4650 0.6069 0.6061 

7 4.7411 4.4928 0.7407 0.7472 

8 4.7503 4.7206 0.7528 0.7531 

9 5.2961 5.1895 0.9356 0.8446 

10 5.3504 5.2050 0.9685 0.8480 

 

Table above shows the values of the first 10 natural frequencies of a rectangular graphene clamped on all four 

sides. The frequencies for the extensional modes are given in columns 2 and 3 obtained by the lattice structure 

and continuum plate theories respectively.  Columns 4 and 5 show the corresponding frequencies in flexural 

modes. Figures 1 and 2 show the in-plane and out-of-plane mode shapes for the frequencies presented in the 

table. The symmetry and anti-symmetry with reference to horizontal and vertical axes and also the two 

diagonals of the rectangular graphene are distinctly observed. This particular graphene sheet is relatively small 

in size and that is why the discrepancy between the frequency values from the two methods is distinctly 

noticeable. When the overall size increases, this discrepancy decreases rapidly and the results from the two 

methods show excellent agreement. 

Concluding Remarks.  The lattice structure method is highly desirable, as it includes in modeling the very 

details at the atomic level and renders accurate results. However, the computation can be impeded if the 

graphene size increases even small to medium.  Therefore, an alternate method in which the static analysis is 

performed by the lattice structure method and assuming thickness h = 3.4 Å and the Poisson’s ratio υ = 

0.16 to get two equivalent values of the Young’s modulus. These are: 1.04 TPa and 0.112 TPa for the 

extensional and flexural modes which can be used in the classical plate equations to get very accurate 

results. 
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FIG. 1. First 10 in-plane mode shapes of a nearly square SLGS (4.92 nm×4.97 nm), CCCC 

 

 

FIG. 2. First 10 out-of-plane mode shapes of a nearly square SLGS (4.92 nm×4.97 nm), CCCC. 
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Discretization of structures using a negative stiffness approach in

the context of structural optimization

Gottfried Spelsberg-Korspeter, Andreas Wagner

Dynamics and Vibrations Group, Technische Universität Darmstadt, Germany

1 Introduction

In many technical applications a goal for the design engineer is to achieve a certain dynamical
behavior of a structure. Mathematically this can be achieved through eigenvalue optimization.
In many cases one has to deal with an easy underlying structure which is to be modified such
that a certain modal behavior is achieved. The question therefore arises on how to describe the
modifications in a convenient manner. On the last ISVCS meeting Ilanko referred on the concept
of negative stiffness and mass in the context of asymtotic modeling [1, 2, 3, 4, 6]. The purpose of
this paper is to elaborate this approach in the context of structural optimization.

2 Demonstration of the approach with a simplistic example

The basic idea of the approach is that by using the concept of negative stiffness it is possible to
discretize different parts of a structure in an adequate manner in a first step and to couple the
discretizations in a second step.

As probably the easiest example consider the structural model of a longitudinal bar with different
material parameters between L1 and L2 as shown in figure 1. The goal is to use one discretization

L1

L2

L3

ρ1, E1 ρ2, E2 ρ1, E1

Figure 1: longitudinal bar with different sections

for the global rod and one for the distortion with different material parameters. The displacement
field can be expanded in terms of shape functions

u(x, t) =
∑
i

Wi(x)qi(t)

yielding the discretized equations of motion

Mq̈ +Kq = 0, mij =

∫ L

0

ρAWiWjdx, kij =

∫ L

0

EAW ′

iW
′

jdx.

As shape functions one can either use global shape functions as for example Wi(x) = sin(i π
L
x) or

local shape functions

Wi(x) = 1 +
x− ih

h
(i− 1)h ≤ x ≤ ih

= 1−
x− (i+ 1)h

h
ih ≤ x ≤ (i+ 1)h.

The area between L1 and L2 is taken into account using a separate discretization scheme and using
negative stiffness and mass with the stiffness matrix K− and the mass matrix M−.
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In order to couple the two discretization schemes the degrees of freedom of both schemes have to
be coupled by kinematic constraints. Assuming that the distortion between L1 and L2 is modeled
with local shape functions the degrees of freedom of the nodes q̃i at the positions x̃i are constrained
by

q̃i = w(x̃i, t) q̃ = Qq.

This has to be taken into account in the corresponding energy expressions

T =
1

2
q̇TMq̇ −

1

2
˙̃qTM− ˙̃q,

U =
1

2
qTKq −

1

2
q̃TK−q̃.

The eigenvalue problem thus reads

[(M −QTM−Q)λ2 + (K −QTK−Q)]v = 0.

Using the parameters

ρ1 = 7850 kg/m3 ρ2 = 7850 kg/m3 E1 = 2.06 1011 N/m2 E2 = 0.206 1011 N/m2

L3 = 1m L1 = 0.4m L2 = 0.65m

where E2 = 0.1E1 we perform three numerical experiments. In one calculation we use 12 global
shape functions for the discretization of the rod and for the second one we use 80 local ones. The
area of the distortion is approximated with 40 local shape functions. The results in the following
table show that all results are in good agreement:

global shape functions local shape functions

ω1 7274 7229
ω2 21625 21533
ω3 37188 36921
ω4 51544 51286
ω5 65326 64753

Performing the same calculation using E2 = 0 reveals a very different result:

exact solution global shape functions local shape functions

ω1 20117 6487 19938
ω2 45981 24033 45535
ω3 60350 33043 59863
ω4 91962 52321 91208
ω5 100580 70399 99927

It is seen that the convergence of the approach with global shape functions is rather poor. The
convergence for the approach with local shape functions is acceptable, however we note that the
approximations do not yield an upper bound for the eigenfrequencies as for a standard Ritz-
Galerkin approach. A couple of approximately zero eigenvalues corresponding to the nodes in
the distortion have been discarded in the table. The reason for the poor convergence with global
shape functions lies in the fact that now the left and the right part of the rod are not connected
whereas the shape functions couple both parts. A look at the approximation of the first eigenforms
shows that it is very poorly approximated with the global shape functions. Nevertheless in many
applications the structure is not completely separated as in this case and a good convergence is to
be expected also with global shape functions.

3 Structural optimization of a disc brake

It has been proved that breaking the symmetries of rotors in frictional contact helps to stabilize the
system and to prevent squeal [5]. Therefore we try to optimize a bicycle disk brake such that no
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Figure 2: brake disk geometries

double eigenfrequency occurs by placing holes of given radius at variable positions. The disk has the
inner radius ri = 67 mm and outer radius ra = 80 mm and is h = 2 mm thick. We give a random
initial placement (green circles) for 40 holes with diameter 4 mm and optimize for their positions
(blue circles). The objective function is to maximize the minimum distance between eigenfrequencies
under the constraints that the disc stays statically balanced and holes do not intersect with each
other or the boundary. The corresponding geometry is shown in figure 2 and a minimum splitting
of the eigenfrequencies of around 60 Hz has been achieved. The major advantage of the method is
that for plates and holes the same discretization can be maintained throughout the optimization
and that only the matrix Q has to be build up in every step of the optimization.

4 Conclusions

The approach of using negative mass and stiffness operators suggested by Ilanko is not only useful
in asymptotic modeling but also in structural optimization. It offers the opportunity to combine
different discretization schemes which are suitable for a master structure and modifications. In this
paper the method is applied to optimize a bicycle disk brake in order to prevent squeal. At the
moment measures are taken to validate the results experimentally.
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Computation of Lower Bound Eigenvalues 

using the Wittrick-Williams Algorithm 

 

A. Watson, Loughborough University, UK & W. P. Howson, Cardiff University, UK 

 

Abstract 

The major strength of the Wittrick-Williams algorithm lies in its ability to solve 

transcendental eigenvalue problems that stem from exact solution of the governing 

differential equations.  The algorithm was originally developed in the context of structural 

mechanics where the eigenvalues are positive numbers bounded below by zero.   

However, the authors show that in other disciplines, where eigenvalues can be negative, 

their existence does not impose a limitation on the algorithm.  This is illustrated by a 

problem in mathematics in which negative eigenvalues can be calculated by first computing 

the eigenvalues when the problem is modified by the addition of a constant valued 

potential.  Once these modified eigenvalues are computed, the required eigenvalues can 

be extracted by subtracting the original potential.  

Section 1 

Consider the classical second-order Sturm-Liouville (SL) equation, which can be written as 

                                                      
d dy

p qy wy
dx dx

 
− + = λ 

 
                                                 (1) 

where p, q and w are all real valued, positive constants.  For simplicity we allow p=q=w=1 

to give 

                                                               
2

2

d y
y

dx
− = λ                                                             (2) 

Assuming an interval length of unity and left and right hand boundary conditions of   y = 0 

and y’ = 0, respectively, the required eigenvalues are given by 

                                          

2
(2 1)

1,2,...,
2

i

i
i

− π 
λ = = ∞ 

 
                                      (3) 

If now the boundary conditions are changed, all the eigenvalues stemming from Eq.(3) 

would be modified.  For example, suppose the right hand boundary condition is changed to 

                                                                 'y hy= −                                                              (4) 
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where h is a real valued constant in the range h−∞ < < ∞ .  If now h≥0, then all 

eigenvalues are zero or positive.  However, if h<0 negative eigenvalues are possible. The 

computation of a negative eigenvalue is more troublesome since the square root of the 

eigenvalue is imaginary.  In order to overcome this we introduce a constant value potential, 

q, to Eq.(2).  This will change the eigenvalues that are obtained from λ to λ*, hence 

                                    ( )
2 2

2 2

* *d y d y
qy y q y

dx dx
− + = λ ⇒ − = λ −                            (5a, b) 

The potential q needs to be sufficiently large so that the lower bound eigenvalue for the 

modified problem is shifted above zero.  Once this is satisfied the modified eigenvalues can 

be computed using the normal approach.  The original eigenvalue can then be recovered 

as 

                                                               ( )* qλ = λ −                                                            (6) 

As an example, consider the case of 2h = − . If a value of 20q = is used in Eq.(5), the first 

eigenvalue of the modified problem is 16.3328∗λ = .  This modified eigenvalue is not of 

interest as it is dependent upon the chosen value of q.  The true eigenvalue is then 

recovered from Eq.(6) as 3.6672λ = − .   

Conclusions 

The authors show, using an example from mathematics, how negative eigenvalues can be 

computed by solving a modified problem. In the current example, this was acieved through 

the introduction of a constant value potential into a second order Sturm-Liouville equation.  

However, such calculations are not restricted to the second order problem.  The method 

described above can be adapted to extract negative eigenvalues from 4th and higher order 

SL problems. More generally the computational procedure described has significant 

potential in all areas of science that require the calculation of negative eigenvalues with the 

only proviso being that the differential equation is soluble in closed form and that all the 

eigenvalues are real. 
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Force Flight Dynamics Lab, where I worked on two interesting projects.  The first was the 
development of a structural design algorithm capable of, among other things, “maximizing” the 
separation of two natural frequencies.  The utility of this endeavor was to allow the design of 
aircraft wings for which the bending and torsional natural frequencies are sufficiently separated 
(in frequency) to avoid flutter.  The other interesting project was the analysis of the effect of 
convected aerodynamic loads on a missile.   

 
I am now on the Aerospace Engineering faculty at the University of Kansas.  My current 

research interests are in structural acoustics, which is a topic of increasing  interest to aircraft 
manufacturers.   In recent years, I have focused on the best way to characterize and estimate 
structural damping for built-up structures.  All the test articles I’ve used to validate my work 
through experimentation are simple structural elements, namely beams and plates. 

 
I have a great love of the outdoors, and of the mountains in particular.  When Art Leissa 

asked me to help organize the first International Symposium on Vibrations of Continuous 
Systems—held in 1997—and he told me he wanted to meet in the mountains, I really got 
excited.   I look forward to the 8th Symposium in Whistler as a time to visit with long-time 
friends and colleagues. 
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Peter Hagedorn 
 

Professor Emeritus 
Technische Universität Darmstadt 

Darmstadt, Germany 
 

I received most of my education in Sao Paulo, Brazil, where I obtained a degree in 
mechanical engineering and later a doctor's degree (in 1966) at the Escola Politecnica da 
Universidade de Sao Paulo. Later I did my 'Habilitation' (similar to a D.Sc. degree) at 
Karlsruhe in Germany. My main professional interests are vibrations and stability of discrete 
and continuous systems (such as beams, plates and cables), and vibration control. While my 
early work was more analytical (e.g. the converse of the Lagrange-Dirichlet theorem, 
differential games, etc.), during the last 30 years I have worked more and more also with 
problems related to industrial applications, including experimental work, the emphasis 
however usually being on producing practical mathematical models.  

 
Recently I have been working with piezoelectric ultrasonic travelling wave motors, 

wind excited vibrations of overhead transmission lines (including CFD calculations), and 
with the dynamics and active noise control in disk brakes. I am the author of several books on 
linear and nonlinear vibrations as well as a three volume German textbook on elementary 
statics, strength of materials and dynamics. I have also organized several workshops dealing 
with the question of how we should teach engineering mechanics to our students today.  

 
Since 2009 I am officially retired at the University. I am presently attached to AdRIA, 

a new institute dealing with active structures, affiliated to the University, where I still have a 
group of 5 PhD students and postdocs, and I am acting as an advisor to the Fraunhofer 
institute LbF.  

 
I have been a visiting professor and research fellow at Stanford, Berkeley, Paris, Irbid 

(Jordan), Rio de Janeiro and Christchurch (New Zealand). At the University of Canterbury at 
Christchurch, New Zealand, I also hold the position of an Adjunct Professor, and we usually 
spend about a month there every year (also seeing the family and enjoying the 
grandchildren). My personal hobbies are travelling, reading, photography and hiking (mainly 
day hikes).  
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Shinya Honda 
 

Assistant Professor of Human Mechanical Systems & Design 
Hokkaido University 

Sapporo, Japan 
 

I am a faculty member of the Department of Human Mechanical Systems & Design 
in Faculty of Engineering, Hokkaido University. I graduated the Department of Mechanical 
Engineering in 2005, and obtained M. Eng. in 2007 from Hokkaido University. In 2009, I 
also obtained a PhD from Hokkaido University in the area of optimization of composite 
plates. My supervisor was Prof. Narita who is the editional chairman of 8th ISVCS, and now 
I’m working with Prof. Narita in his laboratory.  

 
The title of my doctor thesis is “Study on vibration design of fibrous composite 

plates with locally anisotropic structure”. I wrote some articles about this topic, and got the 
Young Researcher Award from the Japan Society of Mechanical Engineering (JSME) in 2011.  

 
Recently, I have an interest in a research field of smart structures, especially, 

vibration control of smart composite. I collaborate with Prof. Kajiwara who is also professor 
in Hokkaido University and specialist of smart structures. In 2010, I got the Excellent 
Presentation Award at the 53th Automated Control Conference (JSME).  

 
I’m now eager to have a chance to study abroad, and looking for a professor who 

accepts me as a visiting researcher for about a year. If you can accept me, please contact me 
during the conference.  

 
I was born and had grown up in Sapporo where I live in now with my wife Tomoko. 

We got married in 2009 and we are looking forward to having a baby in the near future. I like 
driving a car, going to gym and drinking beer.  
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Chiung-Shiann Huang 
 

Professor of Civil Engineering 
National Chiao Tung University 

Hsinchu, Taiwan 
 

Chiung-Shiann Huang’s current position is a Professor in the Department of 
Civil Engineering, National Chiao Tung University, Taiwan. He received his Ph. D in 
1991 at the Department of Engineering Mechanics at the Ohio State University. After that, 
he spent nine months as a postdoctoral research associate in the Department of Civil 
Engineering at the Ohio State University. The doctoral and postdoctoral research dealt with 
the use of singular corner stress functions to permit accurate solutions for free vibration 
frequencies of thin plates having sharp corners. 

 
In 1992, he went back Taiwan and joined the research staff at the National 

Center for Research on Earthquake Engineering (NCREE). In addition to continue his 
serious  interests  on  computational  mechanics,  he  began  to  study  the  system 
identification of structures from monitoring earthquake responses of structures and the 
responses  from  various  tests  in  field,  such  as  ambient  vibration  test  and  forced 
vibration test. 

 
After having stayed in NCREE for nine years, he joined the faculty of the Civil 

Engineering Department at National Chiao Tung University in 2000. His current main 
interests are vibrations of plates with stress singularities and system identification for 
structures using time series, neural network, and wavelet transform. 
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James R. Hutchinson 
 

Professor Emeritus 
University of California Davis 

Davis, California, USA 
 
 

Jim was born in San Francisco Ca.  He graduated from Stanford University with a BS in 
Mechanical Engineering in 1954.  Upon graduation he went to work for Westinghouse’s Atomic 
Power Division in Pittsburgh Pa.  While working at Westinghouse he earned his masters in 
Mathematics in 1958.  He then went to work for Lockheed Missiles and Space Division in Palo Alto 
Ca.  While working at Lockheed he went back to Stanford as a part time student, earning his Ph.D. 
in Engineering Mechanics in 1963.  He stayed on at Lockheed for another year before taking an 
academic position at the University of California, Davis.  He retired from UCD in 1993, but 
continued to teach on a recall basis for at least five more years. 

 
His interest in vibrations began while he was working at Lockheed.  His primary 

responsibility at Lockheed was in missile vibrations.  When he arrived at Davis he was asked to 
teach the graduate course in Mechanical Vibrations.  Many of his students were from Agricultural 
Engineering.  They were interested in shaking fruit and nuts from trees.  Of course, the solution 
methods were the same whether the vibrating body was a missile or a tree, and a number of 
cooperative projects took place on the study of tree vibrations.  His early interest in continuum 
vibration also had its roots in missile applications. 

 
Jim loves to sing and was very active in the Davis Comic Opera Company that mainly 

produced the works of Gilbert and Sullivan. He is still singing with the University Chorus.  Last 
Spring he had the privilege of singing Berlioz “Te Deum” with an adult chorus of 125 and a 
children’s chorus of 200.  Jim is a former home-brewer and has dabbled in photography, stained 
glass, auto mechanics, and lately web design. He has become an avid golfer and even though he 
complains about his terrible scores, he still manages to play twice a week. 

 
Jim does volunteer work with Citizens Who Care (a local non-profit agency dedicated to 

helping the elderly), and is presently president of the board of directors of that organization.  Jim and 
his wife, Pat, are co-chairs of the CWC annual winter concert, which raises about $25,000 each year 
for the organization. 

 
Jim and Pat moved into University Retirement Community, Davis (URC) three years ago.  

Both he and Pat have become very involved in URC activities.  Pat is on the Resident Council, 
which is our main link to management.  Jim is chair of the Facilities Committee, and this last April 
directed (and acted in) the entertainment for our “Foundation Dinner” a $125 a plate fundraiser.  
Everyone had a great time and we raised a lot of money. 
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Stanley Hutton, P.Eng. 
 

Professor Emeritus of Mechanical Engineering 
University of British Columbia 

Vancouver, British Columbia, Canada 
 

Dr. Hutton was born in England and completed his undergraduate degree at Nottingham 
University in 1963. He then worked for Taylor Woodrow (Int) as a site engineer on the 
construction of a nuclear power station at Wylfa, North Wales responsible for the design and 
quality control of the concrete used on the job. Subsequently he immigrated to Canada and 
pursued a MASc degree at the University of Calgary in the field of reinforced concrete design. 
After a weekend trip to Vancouver he took a job in Vancouver as a structural design engineer 
with H.A. Simons (Int) involved in the design of pulp and paper mills. Recognizing that a life as 
a design engineer was not for him he enrolled in a Ph D   program at the University of British 
Columbia in the field of structural mechanics. His Ph D thesis (1970) was concerned with 
defining a clear mathematical basis for the finite element method. In 1971 he took a position at 
the University of Adelaide in Australia working on the dynamic response of bridges and tall 
buildings. 
 

In 1979 he took a position in Mechanical Engineering at the University of British 
Columbia. Here he established a major research program designed to support the lumber industry 
of Canada. This work was primarily concerned with the vibration response of wood cutting band 
and circular saws. Of particular interest are the stability characteristics of such saws and their 
dependence on blade thickness, blade speed and feed speed. Currently his research is focused on 
the stability characteristics of guided circular saws. 
  

Dr. Hutton has acted as a consultant to the wood cutting industry for the past 30 years. 
From 1980 to 2000 Dr. Hutton also acted as a consultant to the Canadian Navy on matters 
involving ship and submarine vibrations. During this same period Dr. Hutton has acted as an 
expert witness in approximately 20 law cases pertaining to rotor vibration issues. 
 

Dr. Hutton took early retirement in 2001 from administrative and teaching 
responsibilities but has continued to support graduate students up to the present. 
He has wide sporting interests that include: golf, skiing, hiking, and cycling. 
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Sinniah Ilanko 
 

Associate Professor of Engineering 
The University of Waikato 

Te Whare Wananga o Waikato 
Hamilton, New Zealand 

 
e-mail:   Ilanko@Waikato.ac.nz 
www URLs: http://sci.waikato.ac.nz/staff/engg/ilanko 

http://www.geocities.com/ilanko/vibration.htm 
  http://www.geocities.com/ilanko/eng.html 
 

Ilanko was born in the north of Sri Lanka (Jaffna) in1957, and according to the common 
Tamil practice, he does not have/use a family name. Ilanko is his given name and Sinniah is his 
late father’s given name. 

 
He graduated from the University of Manchester (U.K) with a BSc in civil engineering 

and also obtained an MSc from the same university under the supervision of Dr S.C. Tillman. 
His move to England at an early age was the result of his late brother Senthinathan’s foresight on 
the Sri Lankan political situation. After working as an assistant lecturer at the University of 
Peradeniya in Sri Lanka for about two years, he commenced doctoral studies at the University of 
Western Ontario under the supervision of Professor S.M. Dickinson. Soon after completing his 
PhD, he worked as a postdoctoral fellow at the UWO for about six months until he joined the 
University of Canterbury in 1986. He continued his academic career at Canterbury for nearly 20 
years, in various positions, as lecturer, senior lecturer and associate professor until he joined the 
University of Waikato in 2006. He has also served as the Head of Mechanical Engineering 
Department at Canterbury for a year (2001-2202) and worked as a visiting professor at the 
Annamalai University (India) and Technical University of Hamburg-Harburg during his study 
leaves. In 1997, he was awarded the Erskine Fellowship and visited several universities in 
Australia, Canada, Singapore and the U.K. 

 
His research areas include vibration and stability of continuous systems, numerical 

modelling and adaptive mechanisms. Since January 2009, he is serving as the Subject Editor for 
Journal of Sound and Vibration, for analytical methods for linear vibration.  

 
He is also interested in computer-aided learning and has developed and used several 

interactive lectures and tutorials for teaching Mechanics of Materials and Vibration, as well as 
computer tutorials and games for learning/teaching Tamil language. He maintains a “vibration 
resources homepage” (see the second URL above), which at present contains some interactive 
simulation programs for calculating natural frequencies and modes of some structural elements.  

 
He is married to Krshnanandi and they have two daughters, Kavitha and Tehnuka. 

Ilanko’s birth family is scattered across the globe (Australia, Canada, New Zealand, the U.K. and 
the U.S.A.) because of the civil war in Sri Lanka. 
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David Kennedy 
 

Professor of Structural Engineering 
Cardiff University 

Cardiff, United Kingdom 
 
David Kennedy obtained a First Class Honours degree at the University of Cambridge in 1978 
and a PhD in the area of efficient transcendental eigenvalue computation from the University of 
Wales, Cardiff in 1994. 
 
From 1978 to 1983 he was employed as an Analyst/Programmer for the computer services 
company Scicon Ltd, where he worked on the development of the Mathematical Programming 
software SCICONIC/VM. In 1981 he was awarded a 2-year BP Venture Research Fellowship in 
Non-linear Optimization, supervised by the late Professor Martin Beale. 
 
In 1983 he was appointed as a Research Associate in the University of Wales Institute of Science 
and Technology, which was merged into Cardiff University in 1988. Working under the 
supervision of Professor Fred Williams and funded under a collaborative agreement with NASA, 
he coordinated the development of the space frame analysis software BUNVIS-RG which was 
released by NASA to US users in 1986/87. Further collaboration with NASA and British 
Aerospace (now BAE Systems) led to the development and successive releases, starting in 
1990/91, of VICONOPT, a buckling and vibration analysis and optimum design program for 
prismatic plate assemblies. Both of these programs use analysis methods based on the Wittrick-
Williams algorithm. 
 
He was appointed to a Lectureship in the Cardiff School of Engineering in 1991, promoted to 
Senior Lecturer in 2000, Reader in 2005 and Professor in 2009. He has continued to manage the 
collaborative development of VICONOPT, successfully co-supervising 14 PhD students and 
holding Research Council grants on parallel computing, aerospace panel optimization, local 
postbuckling and mode finding. He has visited NASA Langley Research Center several times, 
and in 2007 he undertook a 6-month secondment to Airbus UK, funded by a Royal Society 
Industry Fellowship. In 2010 he was appointed as a Deputy Director of the Cardiff School of 
Engineering with responsibility for staff matters. 
 
As Deputy Director of the Cardiff Advanced Chinese Engineering (ACE) Centre, Professor 
Kennedy has assisted in the development of research agreements with leading Chinese 
universities, including Tsinghua University, Dalian University of Technology and Shanghai Jiao 
Tong University. 
 
Professor Kennedy is the author of 140 publications of which approximately 50% are in refereed 
journals of international standing. 
 
He lives with his wife Helen and enjoys choral singing, organ playing and hill walking. Having 
been a keen cross-country and road runner at student level, he has tried to emulate this success as 
a veteran (50+) by competing 3 times in the Cardiff Half Marathon. 
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Yukinori Kobayashi 
 

Professor of Human Mechanical Systems & Design 
Hokkaido University 

Hokkaido, Japan 
 

Yukinori Kobayashi is a professor of the Division of Human Mechanical Systems 
and Design, Graduate School of Engineering, Hokkaido University.  He received all of his 
degrees in mechanical engineering from Hokkaido University: Bachelor '81, Master '83 and 
Doctor '86.  Professors Toshihiro Irie and Gen Yamada were his supervisors.  The title of 
his dissertation was "Vibration and Response of Thin Shells" in which he analyzed linear 
vibration problems of a variety of shells using the Ritz method and transfer matrix method.  
He was a visiting scholar of the Ohio State University from 1991 to 1992 and started on 
research about the nonlinear vibration of plates and shells under supervision of Professor A. 
W. Leissa. 

 
His current research interests include the nonlinear vibration of continuous systems 

and the vibration control of continuous systems.  He is a member of the Japan Society of 
Mechanical Engineers, the Society of Instrument and Control Engineers, the Robotics Society 
of Japan. He has published over 80 papers on vibration of continuous systems and application 
of control theory for flexible structures.  He teaches vibration engineering and control theory 
to students of department of mechanical engineering. 

 
He was a member of a ski club when he was a university student and climbed 

mountains in Hokkaido many times.  He now lives in a suburb of Sapporo near the Sapporo 
Art Park with his family. 
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Arthur W. Leissa 
 

Professor Emeritus – Ohio State University 
Adjunct Professor – Colorado State University 

 
After earning two degrees in mechanical engineering, with a strong interest in machine 

design, I decided to seek better understanding of stress and deformation of bodies, so I got my 
Ph.D. in engineering mechanics (from Ohio State University in 1958).  My dissertation research 
was in the theory of elasticity.  I then stayed on as a faculty member. 

 
Working part-time for two aircraft companies (Boeing and North American Aviation) 

made me very interested in vibrations.  In 1965 I approached NASA to support me with research 
funds to collect the literature of the world in plate and shell vibrations, and summarize it in two 
monographs.  They did, and the two books were published in 1969 and 1973.  They were out of 
print for a long time.  But in 1993 they were reprinted by The Acoustical Society of America and 
are currently available from them. 

 
After gaining considerable knowledge in writing the two books, I continued to do 

extensive research on vibrations of continuous systems, including laminated composites, 
turbomachinery blades, and three-dimensional problems.  Approximately 150 published papers 
and most of the 40 dissertations I supervised were in this field. 

 
I always intended to update the “Vibration of Plates” monograph.  Indeed, more than 20 

years ago I had a graduate student collect the more recent literature.  This consisted of 1500 
additional references dealing with free vibrations.  But I never could find the time needed to 
undertake the writing. 

 
In June of 2001 I formally retired from Ohio State University after having been on its 

faculty for 45 years.  In July 2002 Trudi and I moved to Fort Collins, Colorado, approximately 
60 miles north of Denver, and close to the mountains.  I am now an Adjunct Professor in the 
Department of Mechanical Engineering of Colorado State University.  Having no serious 
responsibilities there, I continue my editorial functions with AMR, and still collaborate 
somewhat with others on research. 

 
My serious interest in the mountains began as a boy, reading books about Mallory and 

Irvine on Everest, and others.  In 1962 when I could first afford it (with a family) I began 
climbing mountains, which I pursued strongly for decades.  Now being 79, I can no longer climb 
them, but I still enjoy greatly being in the mountains – hiking, skiing, and snowshoeing.  They 
restore one’s vitality and one’s peace. 

 
In 1995 Mark Ewing, who was in Colorado then, agreed to help me organize the first 

International Symposium on Vibrations of Continuous Systems, held in 1997 in Estes Park, 
Colorado.  It was well received, and so it has continued every two years in marvelous mountain 
locales worldwide.  I look forward to taking part again, this time in Canada in the mountains of 
Whistler. 
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Shinichi Maruyama 

 

Associate Professor of Mechanical System Engineering 
Gunma University 

Japan 
 

Shinichi  Maruyama  is  an  associate  professor  of  the  Department  of  Mechanical 
System Engineering in Graduate School of Engineering, Gunma University, Japan. 

 

He was born in Takamatsu and had been lived in Chiba, suburb area of Tokyo, until 
he graduated university. He obtained Master of Engineering and Doctor of Engineering in 
1999 and 2002, both from Keio University. Since 2002, he has been taking an 
academic position in Gunma University and working with Professor Ken-ichi Nagai. 

 
His research interests include nonlinear and chaotic vibrations of mechanical systems, 

and analyses and experiments on dynamics of thin elastic structures. 
 
He is a member of the Japan Society of Mechanical Engineers. Since 2010, He has 

been the chair of the Technical Section on Basic Theory of Vibration in the Division of 
Dynamics, Measurement and Control in JSME. 
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Luis E. Monterrubio 

Postdoctoral Research Fellow 
University of California San Diego 

San Diego, California, USA 
 

I was born in Mexico City and grew up in Merida, a smaller city in the Yucatan 
Peninsula, before I started my B. Eng. in Mechanical Engineering at the UNAM (the National 
University of Mexico located in Mexico City). I graduated in 1996 and worked for an automotive 
company for almost two years.  Then, I moved to Canada to start my M.A.Sc. at the University 
of Victoria in BC, Canada graduating with a M.A.Sc. in Dec. 1999. In year 2000 I took training 
in Mechatronics in Japan. During 2001-2005 I went back to work for the automotive industry in 
Mexico City and Barcelona, Spain. After that I moved to Hamilton, New Zealand to pursue a 
Ph.D. at the University of Waikato working under the supervision of Dr. Ilanko. During my 
Ph.D. studies (2006-2009), I solved vibration and buckling problems of structural elements using 
the Rayleigh-Ritz method together with the penalty method to model constraints. The 
investigation of the penalty method included adding positive or negative penalty terms to either 
the elastic stiffness matrix or the geometric stiffness matrix or the mass matrix of the structure. I 
am currently in my second year as a Postdoctoral Research Fellow at the University of California 
San Diego (UCSD) working for Dr. Krysl in bioacoustics. 

 
My hobbies are movies, music and sports. After graduating from the University of 

Waikato I spent a few months training to take part in the 2009 Ironman (triathlon) in Cozumel, 
Mexico. San Diego is also a fantastic place to train for triathlons and I especially enjoy 
swimming at La Jolla Cove with seals, leopard sharks, stingrays and dolphins. 
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Ken-ichi Nagai 
 

Professor of Mechanical System Engineering 
Gunma University 

Japan 
 

Ken is a professor of the Department of Mechanical System Engineering in Graduate 
School of Engineering, Gunma University. 

 
He graduated from the national college of technology in Fukushima in 1967. During the 

student, he received academic interest from the book "Mechanics" written by Den Hartog. He 
wanted to devote himself to research and education. He received his B. Eng. in 1970 from 
Ibaraki University. He obtained M. Eng. and Dr. Eng. in 1972 and 1976 from Tohoku 
University, respectively. Main research subject was nonlinear vibrations of plates and dynamic 
stability of plates and cylindrical shells, under his supervisor Professor Noboru Yamaki. 

 
Since 1976, he has been taking an academic position in Gunma University. From 1990 to 

1991, he was a visiting fellow at Cornell University in U.S.A. During the stay in U.S.A., 
Professor Leissa in the Ohio State University gave him nice advises in research area. Then, he 
also visited Technische Hochshule Darmstadt in Germany to the labo. of Professor Hagedorn. 
Furthermore, he visited Polish Academy of Sciences in Poland. 

 
He is a Fellow of the Japan Society of Mechanical Engineers. He has been a consultant to 

ministry, local government and automobile industry. 
 
He is now devoted in the research filed of nonlinear vibration, dynamic stability and 

chaotic oscillations of structure such as beam, arch, plate and shell. Recently, he published the 
book of "Dynamic system Analysis -Energy Approaches from Structural Vibration to Chaos-" 
and “Dynamics of Nonlinear Systems –Introduction to Analysis of Nonlinear Phenomena-”. 

 
His personal interests include hiking. He feels spiritual happiness as walking in fields and 

facing to new phenomena of chaotic vibration generated from thin elastic structures. 
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Yoshi (Yoshihiro Narita) 
 

Vice Dean of Faculty of Engineering 
Hokkaido University 

Sapporo, Japan 
 

First of all, I would like to start by expressing my deepest thanks to the friends in 
ISVCS community. After the worst earthquake took place on 11th March in Japan, I 
received many e-mails to worry about my family and people in Japan. Fortunately, our 
city Sapporo is far enough to avoid the damage due to the earthquake itself and my 
family was all safe. Please pray for Japan so that we can overcome the devastating tsunami 
damages and settle down the nuclear crisis still going on. 

 
As for myself, seven years have passed since I moved to Hokkaido University (HU), 

and I am still enjoying teaching young students and working with graduate students 
who are capable of excellent research studies. The only problem is that I have quite 
limited time for research now, since I became Vice Dean of Faculty of Engineering. 

 
I started my research on vibration of continuous systems when I was a graduate 

student under adviser Prof.Irie of HU in 1976, and had a chance to study one year in 
1978-1979 under Prof.Leissa at the Ohio State University. I have kept the same topic 
thirty years. I combine the vibration and buckling of plates and shells with optimization. 

 
Recently, I was pleased with a small good news. My university library is promoting 

the electronic documentation from publications by the researchers in the university. 
When they sent me the number of downloads of my doctoral dissertation “Free 
Vibration of Elastic Plates with Various Shapes and Boundary Conditions”, I realized 
that my dissertation was downloaded 243 times, and 93 percent is from outside Japan, 
including 151 times from United States. If you have time to kill, please access: URI: 
http://hdl.handle.net/2115/32630 

 
I am very happy that I could have joined all the ISVCS’s, including ISVCS-I(Estes 

Park, USA),    II(Grindelwald,    Switzerland),    III(Grand    Teton,    USA),    IV(Keswick,    
UK), V(Berchtesgarden, Germany), VI (Squaw Valley, USA) and VII(Zakopane, 
Poland). These visits are full of good memories. In the present ISVCS-8, I look forward 
to meeting old and new friends in the research community of applied mechanics. 

Let’s enjoy!                       
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Francesco Pellicano 
 

Associate Professor of Mechanical and Civil Engineering 
University of Modena and Reggio Emelia 

Reggio Emelia, Italy 
 

Francesco Pellicano was born in Rome, Italy on 1966.  He received a M.S. degree in 
Aeronautical Engineering in 1992 and Ph.D. in Theoretical and Applied Mechanics in 1996, 
both at the University of Rome “La Sapienza,” Dept. of Mechanics and Aeronautics. 

 
He was Researcher at the University of Modena and Reggio Emilia, Faculty of 

Engineering, Dept. of Mechanical and Civil Engineering, 1996-2003.  
 
He is currently Associate Professor at the same University since January 2004. 
 
He was involved in investigations concerning: nonlinear vibrations of structures; 

nonlinear normal modes; axially moving systems; nonlinear vibration of shells with fluid 
structure interaction; gears modeling; non-smooth dynamics; Chaos; Nonlinear Time Series 
Analysis; Forecasting Methods in Oceanography. 

 
He cooperated with Prof. Vestroni, Prof. Sestieri and Prof. Mastroddi of the 

University of Rome “La Sapienza” and with: Prof. Païdoussis (Mc Gill Univ. Canada); Prof. 
Vakakis (Univ. of Illinois at Urbana Champaign; recently National Technical Univ. of 
Athens, Greece); Prof. Amabili (Univ. of Parma, Italy). 

 
The teaching activity regards: Vibrations of Discrete and Continuous Systems; Signal 

Processing; Machine Theory and Machinery. 
 
He was coordinator of an international NATO CLG-Grant project on Nonlinear 

Dynamics of Shells with Fluid Structure Interaction and was the local coordinator of an 
Italian project on Shells Vibrations. 

 
His research activity regards also industrial problems; he cooperated for research and 

consultancies with several companies about: vehicle stability; experimental vibrations; clutch 
instabilities and failures. 

 
He was reviewer for the following international journals: SIAM Journal of Applied 

Mathematics, Nonlinear Dynamics, ASME Journal of Vibration and Acoustics, J. of Solids 
and Structures; J. of Sound and Vibration, Computer Methods in applied Mechanics and 
Engineering, Int. J. of Systems Science; and reviewer for the foundations: FCAR (Fonds pour 
la Formation de Chercheurs et l' Aide à la Recherche) Québec, CANADA; Natural Science 
and Engineering Research Council of Canada. 

 
He is Associate Editor of the journals: Mathematical Problems in Engineering, 

Hindawi; Chaos, Solitons and Fractals, Elsevier; moreover, he takes part to the international 
advisory editorial board of the journal: Communications in Nonlinear Science and Numerical 
Simulation, Elsevier. 

 
He published a Book, 35 Journal papers and more than 60 conference papers. 
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Wolfgang Seemann 
 

Chair for Dynamics and Mechanatronics 

Institut für Technische Mechanik, Universität Karlsruhe (TH) 

Karlsruhe Institute of Technology 

Karlsruhe, Germany 

 

I was born on 31 March, 1961 in Keltern (Germany, Baden-Württemberg). After school I 

studied mechanical engineering at the University of Karlsruhe from 1980 to 1985. After civil 

service (1985-1987) I began as a PhD student working at the Institute of Applied Mechanics at 

the University of Karlsruhe. The PhD was finished in 1991 with a thesis on 'Wave propagation in 

rotating or prestressed cylinders'. In 1992 I joined the group of Peter Hagedorn at Darmstadt 

University of Technology to work in a post-doc position until 1998 when I got a professorship on 

machine dynamics in Kaiserslautern. In 2003 I got an offer to go back to the University of 

Karlsruhe on the chair of Applied Mechanics. 

 

My previous and current research interests are in ultrasonic motors, nonlinear vibration, 

ultibody 

dynamics, vibration of continuous systems, active materials, nonlinear phenomena in 

piezoelectric materials, humanoid robots, dynamics of human motion, mechatronic systems, 

road-vehicle interaction, rotor dynamics and wave propagation. 

 

Besides I am responsible for the French-German cooperation of our university. 
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Anand V. Singh 
 

Professor of Mechanical and Materials Engineering 
University of Western Ontario 

London, Ontario, Canada 
 

 
I was born on July 05, 1948 in the village Rahimpur of Monghyr district, Bihar, India.  I 

completed my elementary and secondary educations from Monghyr Zila School and was directly 
admitted to the Bihar Institute of Technology in Sindri.  I graduated in 1968 with B.Sc. 
Engineering and joined the school of graduate studies at the University of Ottawa a year later.  I 
began my research work with the derivation of the constitutive equations from the first principles 
for the free axisymmetric vibration of sandwich spherical shells under the noble supervision of 
Professor S. Mirza and subsequently received M. A. Sc. and Ph. D. degrees.  These equations 
were developed in the spherical coordinate system and had solutions in Legendre functions of 
complex order which in itself became a research project as I had to derive many new equations 
and also to program those.  During this study I also used energy methods to deduce the equations 
of motion for the free vibration of isotropic and sandwich plates and shells.  

 
After the Ph. D., I joined Defence Research Establishment Suffield (DRES) near 

Medicine Hat Alberta and worked there as a defence scientist from January 1978 to April 1981.  
Following this I accepted a design-engineer position in the Civil Design Department of Ontario 
Hydro in Toronto and remained there until December 1984.  There I mainly worked on the finite 
element analyses of large nuclear power plant structures and also on the seismic response of such 
structures.  I came to the University of Western Ontario to teach machine component design and 
the finite element methods.  Professor Stuart Dickinson was the chair of the Mechanical 
Engineering at that time and he is the one who hired me.  Over the years at UWO, I taught 
graphics and engineering drawings, dynamics, kinematics and dynamics of machines, the theory 
of modern control systems, theories of plates and shells in addition to the two courses mentioned 
above.  I worked with some remarkable students in the field of computational solid mechanics 
dealing with the linear and nonlinear vibrations of plates and shells.  Currently, my research 
activities are involved with the vibrations of nano-scale structures and piezoelectric embedded 
composites. 

 
On the personal note, I got married to Bimla in March of 1968 and have two adult 

children, the son Bidhi and daughter Shikha.  Both are graduates of the University of Western 
Ontario and also have education from the University of Michigan and Michigan State University.  
Bimla and I attended all of the ISVCS except the very first one.  We like to travel; have camped 
in the past with our children; enjoy walking in the park and on the beaches; and wish to live lives 
to the fullest as long as there is wellness.              
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On August 13th 1978 I was born in Dortmund Germany.  I grew up in Dortmund, 

Düsseldorf and Ludwigsburg where I finished high-school (Abitur) in 1998.  After completion of 
the compulsory military service I started studying at TU Darmstadt in 1999. 

 
In 2001 I finished my preliminary diploma in industrial engineering and in mechanical 

engineering and decided to pursue my mechanical interests in the applied mechanics department 
with main focus on dynamics. Taking part in an exchange program of the industrial engineering 
department I spend the fall semester 2002 and the spring semester 2003 at the University of 
Illinois at Urbana Champaign where I mainly worked in the area of operations research. 

 
In 2004 I finished my masters degree in applied mechanics with a thesis related to 

mechanical modelling of ultrasonic motors and went back to the University of Illinois to write 
my master thesis in industrial engineering in the area of operations research. After completion I 
joined the research group of Professor Hagedorn in January 2005. In 2007 I completed my Ph.D. 
work with a thesis on self excited vibrations in gyroscopic systems. Since then I have been 
teaching classes on nonlinear vibrations, multibody dynamics and vibrations of continuous 
systems for masters students and engineering mechanics for bachelor students.  

 
My hobbies are hiking, climbing and other sports. 
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Loughborough University, United Kingdom 
 

Andrew Watson obtained an Upper Second Class degree from Cardiff University in 
1993 and a PhD in the stability analysis and optimisation of prismatic thin walled structures 
in 1998.   

Since then he stayed at Cardiff for five further years and worked as a postdoctoral 
researcher on two EPSRC funded projects.  The first of these was in the initial and advanced 
postbuckling behaviour of optimised aerospace panels.  This work was collaborative with the 
University of Bath and Airbus (UK).  Throughout his PhD and first research project he has 
made contributions to and extended the computer programme VICONOPT, which is used by 
Airbus and NASA for the analysis and optimisation of aerospace panels.  His work in this 
area has resulted in him now being a senior member of the American Institute of Aeronautics 
and Astronautics. 

 
His second EPSRC research project saw him search for inter disciplinary applications 

of the Wittrick-Williams algorithm.  He identified the area of spectral theory in mathematics 
and has published, with his collaborators, two Royal Society Series A journal publications. 

After leaving Cardiff at the end of 2003 Andrew joined the Department of 
Aeronautical and Automotive Engineering at Loughborough University as the Lecturer in 
Aerospace Structures.  His current research covers buckling and postbuckling of aerospace 
panels; vibration of beams and quantum graph theory.   These areas are all eigenvalue 
problems and in general can be solved by using the Wittrick-Williams algorithm. 

 
Andrew regularly reviews papers submitted to a wide range journals for publication.  

He has published over 30 journal and conference papers.   
 
In his spare time he likes to keep up with current affairs and to keep fit he enjoys 

cycling and open water swimming.   
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