
Proceedings of the

Sixth International Symposium on the
Vibrations of Continuous Systems

PlumpJack Squaw Valley Inn
Olympic Valley, California

July 23-27, 2007





iiiInternational Symposium on the Vibrations of Continuous Systems, July, 2007

PREFACE

The International Symposium on Vibrations of Continuous Systems is a forum for leading research-
ers from across the globe to meet with their colleagues and present both old and new ideas on the 
field.  Each participant has been encouraged to either present results of recent, significant research or 
to reflect on some aspect of the vibration of continuous systems which is particularly interesting, un-
expected, or unusual.  This latter type of presentation was proposed to encourage participants to draw 
on understanding obtained through – in many cases – decades of research.  In addition to the technical 
sessions, there is ample opportunity for the participants to meet in a very informal manner during ex-
cursions and hikes, when it is found that both technical and non technical discussions take place, with 
the researchers benefiting enormously from getting to know their colleagues from around the world at 
a level not accomplished during normal conference settings.

The Sixth ISVCS takes place July 22-27, 2007 at the PlumpJack Squaw Valley Inn.  The PlumpJack 
Inn is one of Squaw Valley’s original properties dating back to 1959 when it housed the 1960 Olympic 
delegation. It was fully remodeled and upgraded in 1995 and has a first-rate conference center. Squaw 
Valley is five miles from Lake Tahoe, one of the most scenic places in the United States, if not in the 
world.  It is located in the Sierra Nevada mountain range on the California-Nevada border about 200 
miles east of San Francisco.  Lake Tahoe is renowned for the depth and clarity of its water, which 
produce its beautiful blue hues.

These Proceedings contain 18 summaries of the presentations to be made at the Symposium and short 
biographical sketches submitted by the participants.
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Registration Chairman
Ali H. Nayfeh

General Chairman
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Buckling and Oscillations of a Slender Elastic Beam in a Plane 
- A Systematic Perturbation Analysis 

Eberhard W. Brommundt,  
Institut für Dynamik und Schwingungen, Technische Universität Braunschweig, 

PF 3329, D-38023 Braunschweig, Germany, E.Brommundt@tu-bs.de

 The idea for this investigation stems from the paper by Nayfeh and Kreider [1], which 
studies analytically the vibrational modes of buckled beams for various boundary conditions. For 
the case of a fixed-fixed buckled beam, see Fig.1, the analytical results agree very well with 

experimental results also reported in the paper. 
The analysis of the buckling and the oscillations is 
based on a non-linear partial differential equation 
which, surprisingly, does not permit the transition 

2/( ) 0EI EA L , where EA = longitudinal stiff-
ness, EI = bending stiffness, and L = length of the 
beam, see Fig.1. The question arises: shouldn’t the 
effects of the longitudinal compressibility of the 
beam vanish for very thin beams? 

 The goal of the presentation will be, first, a set of nonlinear equations for the motions of an 
initially straight slender elastic beam in a plane that permits the transition 2/( ) 0EI EA L . On the 
basis of these equations, secondly, we study buckling and oscillations by systematic perturbation 
procedures with respect to the small parameter / ,b L  where b = nominal sag, and compare the 
results with those of reference [1]. Here, we introduce briefly the equations of motion and prepare 
them for the perturbation scheme. 

 Let the central axis of the beam be placed on the horizontal s-axis of a Cartesian coordinate 
system, see Fig.2a. Let s be the material (Lagrange) coordinate along the beam. Let ( , )u s t and 

( , )w s t  measure its displacements in the horizontal and the vertical (downwards positive) direction, 
respectively, see Fig.2b; (t = time, ( ) ' ( ), ( ) ( )s t ). From Fig.2b we read the axial strain 

1,a R  (1) 
where R denotes the square root 

2 2(1 ') ' .R u w  (2) 
The slope angle ( , )s t  satisfies 

sin ' , cos (1 ') .w R u R  (3) 
For convenience we restrict  to | | /2.
We assume small strains, | | 1, | ' | 1,a h
and neglect shear deformation.  

For the axial force Fa, see Fig.3a,
 ,a aF EA  (4) 

where E = modulus of elasticity and A = cross-sectional area. The bending moment M  is given by 

x
w b
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Fig.1: Buckled beam, U – fixed 
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Fig.2: The coordinates and displacements 
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' ,M EI R EI  (5) 
where I = second moment of the cross-
sectional area, 1/  = curvature of the center- 
line.  

Fig.3 shows the segment s L of
the beam with the applying forces, where =
auxiliary coordinate. At the cut s, the bending 
moment M and the forces , ,h vF F  horizontally 
and vertically, respectively, exist, with positive 
orientations against the displacements. At the 
beam’s end, ,L these quantities are ,LM

,HF .VF The distributed loads ,h vp p  act along 
the length of the beam, positively in the 
direction of the displacements, with the inertia 

forces , ,u w  ( = distributed mass); the distributed rotary inertia is neglected.  

The forces ,h vF F at the cut s are transformed to the axial force aF and the shear force ,sF cf. Fig.3/3a:  
 cos sin , sin cos .a h v s h vF F F F F F  (6) 

The conditions for force equilibrium at the displaced beam segment shown in Fig.3 lead to 
the forces , ,h vF F  and the moment equilibrium about the point s of the beam yields the bending 
moment M.
Then from (6)1 and the formulae (1) to (5), after some manipulation, the two integro-differential 
equations result:   

1( 1) ( , ) ( , ) d

' ( , ) ( , ) d ,

L

H hs

L

V vs

uR EA F u t p t
R
w F w t p t
R

 (7) 

2
(1 ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) d

( , ) ( , ) ( , ) ( , ) d .

L H V

L

hs
L

vs

u w u w EI M F w L t w s t F L u L t s u s t
R

w t w s t u t p t

u t s u s t w t p t

 (8) 

 To complete the above equations of motion, a set of six boundary conditions is necessary 
(we will neglect here the initial conditions). For the beam of Fig.1 the following equations apply, 
when a fixed displacement is U given:

at 0: (0, ) 0, (0, ) 0, (0, ) 0,
at : ( , ) , ( , ) 0, ( , ) 0.

s u t w t t
s L u L t U w L t L t

 (9) 

Instead of ( , )u L t U  the conditions ( , ) ( )u L t U t  or ( ), with given ( ), ( ),HF P t U t P t
respectively, might be of interest for the shown beam. 
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Fig.3: Forces and moments applying at the 
segment s L  of the beam  
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 We work on the basis of the integro-differential equations (7), (8), for their individual terms 
have immediate physical meaning. For example, division of equation (7) by EA and transition 
EA  leads to R = 1, i.e., for the inextensible beam the equation (7) is replaced by 

2 22 ' ' ' 0.u u w  (10) 

 It is easy to solve the integrals of the equations (7), (8) by proper differentiations; but the 
terms of the equations will become more intricate. However, even after such differentiations there 
will remain products of inertia terms (accelerations) and displacements or displacement derivatives. 
Is this a characteristic of the system? 

 For an answer we look at Hamilton’s Principle (no calculations are necessary): The kinetic 
energy T and the elastic potential V of the beam, which enter the principle, have the forms 

2 2 2 21 1
2 20 0

, ' ,
L L

as s
T u w ds V EA EI ds  (11) 

where and 'a are calculated from (1) and (3). The standard manipulations to get the equations of 
motion by the principle require partial integrations only. Thus, no products of accelerations and 
displacements will result but the terms that cover the elastic behavior will become involved. 

The perturbation procedure is done for the dimensions of the beam of [1]. They are (in 
metric form): L = 279.17 mm, h = 0.831 mm, b 2.5 mm, d – cancels. We choose the reference 
quantities 2 2length: , force: , frequency: ( ),R R RL L F EI L EI L  and the small parameter 

0.01.Rb L  A comparison of the magnitudes of the individual quantities and terms of the 
equations leads to the following normalized variables, marked by a tilde: 

2

2 4

, , , ( , ) ( , ), ( , ) ( , ), ( , ) ( , ),
0, , , ; , 8.59 10 : .

R R R R R v R R v

h H R H V R V L R R L I I R I

s s L L t t u s t L u s t w s t L w s t p s t F L p s t

p F F F F F F M L F M EI EA r r L r

The normalized equations of motion read 
2 2

2 22 1 ( , )d ( , ) ( , ) d ,
1

L L

I H I V v
s s

u u w u wr F u t r F w t p t
R R R

 (12) 

2

1
( , ) ( , ) ( , ) ( , )

( , ) ( ( , ), ) d

ˆ ˆ( , ) ( , ) ( , ) ( , ) d ,

L H V

L

s

L

vs

u w u w
M F w L t w s t F L u L t s u s t

R

w t w s u t t

u t s u s t w t p t

 (13) 

where the derivatives are to be taken with respect to and ,s t  and
2 2 2: 0.0001, : (1 ') ' .R u w  (14) 

The boundary conditions (9) are normalized likewise. 

These equations and parameters will be the starting point of the perturbation procedures. 

Reference: 
[1] A.H. Nayfeh, W. Kreider: Investigations of natural frequencies and mode shapes of buckled 
beams. AIAA Journal, 33 (1995), pp. 1121 - 1126      
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Variational Statements for Vibration Analysis of Multifield
Problems and Multilayered Structures

E. Carrera, S. Brischetto, P. Nali
Aerospace Department, Politecnico di Torino, Italy

e.mail: erasmo.carrera@polito.it

It is widely believed that much of next generation aircraft and spacecraft will be manufactured as multilayered structures

(MLS) under the action of a combination of two or more of fields such as mechanical, thermal, electrical and magnetical

fields. Two examples of multi-field problem (MFP) application are: the so called ’smart structures’ in which layers of piezo-

electric or piezo-magnetical materials are used as sensor or actuators to develop electro-magnetical fields able to counteract

thermo-mechanical deformation; inflatable structures that have been planned to be used for the future space exploration

mission, which consist of a very special multilayered-made structure subject to thermo-mechanical loadings and in some

cases to electric-magnetical loadings as well. These two examples show that structures that are typically employed in

MFP appear as assemblies of flat or curved MLS. Vibration response of these structures is one of the topics that should be

considered for their use. A number of requirements must be taken into account for accurate vibration analysis of MFP/MLS.

In particular, appropriate variational statements and kinematic description of the various fields in the thickness plate/shell

direction must be employed to accurately describe the various couplings among the applied fields. These two points are

dealt with in the present paper.

Constitutive Equations (CE). The derivation of CE is a starting point in the analysis of MFP. In the case of linearity,

let’s assume as independent variables θ, ǫ, E and H , which represent increments of temperature, strain, electric field and

magnetic field, respectively. The relevant thermodynamic function is the Gibbs free energy per unit of volume G [1]:

G = U − θη − σijǫij − EiDi − HiBi, i, j = 1, 2, 3 (1)

where, 1, 2, 3 denote a reference system in the body volume V ; U is the internal energy per unit of volume, η is the entropy

per unit of volume; σij are stress components; Di are electrical displacement components; Bi are magnetic inductance

components. Standard tensor notation is used and Einstein’s summation convention is intended over repeated indices. Upon

differentiation of the function G and by substituting appropriate material constants, a set of constitutive relations in the

coupled four-field system (θ, ǫ, E, H) can be obtained. Explicit forms are given in [2].

Classical Variational Statement (CVS). Governing equations in both weak or strong form of the considered MFP could

be conveniently obtained by employing appropriate variational statements. If only primary variables are used as problem

unknowns, the extension of the Principle of Virtual Displacement (PVD) in the dynamic case, is written in the following

form: �

V

(ηδθ + σijδǫij + DiδEi + BiδHi) dV = δLe + δLin (2)

δLe is the virtual variation of the work made by the external loads; δLin is the virtual variation of the work made by the

inertial loads.

1
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The PVD statement at Eq.(2) can lead to various subcase problems; these all could be obtained by neglecting some of the

considered virtual variations. A complete discussion has been provided in [2]. As an example we consider the extreme case

in which a pure thermal problem is considered; that is only the temperature δθ is considered as virtual variation. The PVD

leads to the following:
�

V

δθ η dV = δLe + δLin. (3)

Mixed Variational Statement (MVT). Multilayered structures are often used in MFP. A number of requirements must

be addressed to provide accurate analysis of these structures. Among them, the fulfillment of the continuity of relevant

secondary variables in the thickness plate/shell directions (the so called Zig-Zag effect, ZZ, and inter-laminar continuity,

IC) at the interface between two adjacent layers are such necessary amendments. In [3] these requisites were referred to

by the acronym C0

z –requirements, which state that some of the MF variables are C0–continuous functions in the thickness

coordinate z.

A valuable variational tool that permits one the ’a priori’ fulfillment of the C0

z -Requirements, is the extended Reissner

Mixed variational Theorem, RMVT. RMVT was originally proposed for the pure mechanical case [3]. Its extension to MFP,

in the dynamic case, leads to the following variational statement:
�

V

δǫT
pGσpH + δǫT

nGσnM + δσT
nM (ǫnG − ǫnH) + δθGηH + δEpGDpH + δEnGDnM+

δDT
nM (EnG − EnH) + δHpGBpH + δHnGDnM + δBT

nM (HnG − HnH)dV = δLe + δLin

(4)

Bold letters denote array; subscripts p and n denote in-plane and out-of-plane components, respectively. Tranverse normal

and shear stresses σ33, σ13, σ23, transverse electrical displacement D3 and magnetical inductance B3 are considered as

independent variables, therefore these last can be assumed continuous at each layer interface. Subscripts H, G and M denote

variables from CE, geometrical relations and assumed models, respectively.

Several sub-cases can be obtained by RMVT by considering all the possible combination of virtual variation active in the

model, see [2]. For instance, RMVT for the coupled Magneto-Mechanical case, would lead to the following choice for the

virtual variations: δu1, δu2, δu3, δϕ, δσ33, δσ13, δσ23, δBn. The related variational statement is,
�

V

δǫT
pGσpH + δǫT

nGσnM + δσT
nM (ǫnG − ǫnH) + δHpGBpH + δHnGDnM+

+δBT
nM (HnG − HnH)dV = δLe + δLin

(5)

Results. The various CVSs and MVS that have been recently proposed in [2], are in the present work extended to evaluate

the vibration response of MLS for MFP. Numerical results are obtained in the framework of Unified Formulation (UF)

recently detailed in [4]. UF permits a comprehensive modeling of homogeneous and multilayered plates. Both Layer-

Wise (LW) and Equivalent Single Layer (ESL) models have been addressed. Those theories which preserve the number of

variables independent of the number of the constitutive layers are herein denoted by ESLM, while those theories in which

the same variables are kept independent in each layer are denoted by LWM. Higher order ESLM plate theories formulated

on the basis of PVD are compared in Table 1 for the first three modes. The coupled piezo-mechanical problems in [5] are

considered, see [5] for details. Errors are quoted. Plate theories with linear, parabolic and cubic expansion in the thickness

direction are compared in both thin (a/h=4) and thick plate (a/h=50) geometries. Table 1 clearly shows the possibility of

increasing the accuracy by employing higher order kinematic description. PVD results are compared to RMVT ones in the

2
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same Table. Layer-wise plate theories are considered. Two cases of RMVT are given: RMVT-1 and RMVT-2. The ’a priori’

IC of transverse electric displacement components at the layer interface is included in the RMVT-2 case. The results clearly

show the possibilities of MVS to improve CVS analysis. It is concluded that both variable kinematic models and mixed

variational statements could be considered to accurately describe the vibration response of MLS in the MFP framework.
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a/h = 4 a/h = 50
Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3

3D − Exact 57074.5 191301 250769 618.118 15681.6 21492.8
3D Higher order theories results - ESLM analysis

linear 74105.9 196021 266337 689.867 15694.9 21507.4
Err(%) (−29.84) (−2.47) (−6.21) (−11.61) (−0.08) (−0.07)
parabolic 69413.8 195860 262204 620.300 15694.9 21505.2
Err(%) (−21.62) (−2.38) (−4.56) (−0.35) (−0.08) (−0.06)
cubic 58818.6 195825 259586 618.551 15694.2 21500.1
Err(%) (−3.06) (−2.36) (−3.52) (−0.07) (−0.08) (−0.03)

CVS and MVS results - LWM analysis
P V D 57252.5 194840 255646 619.023 15683.4 21494.4
Err(%) (−0.31) (−1.85) (−1.94) (−0.15) (−0.01) (−0.01)
RMV T − 1 57056.6 194696 253955 617.996 15683.3 21493.9
Err(%) (0.03) (−1.77) (−1.27) (0.02) (−0.01) (−0.01)
RMV T − 2 57094.0 194697 253958 618.143 15683.3 21493.9
Err(%) (−0.03) (−1.77) (−1.27) (0.00) (−0.01) (−0.01)

Table 1: Vibration problem for multilayered piezoelectric plate, first three modes. ω = ω/100.

3
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Predicting Damping in Engineered Structures 

Mark S. Ewing, Associate Professor & Chair 
Wanbo Liu, Graduate Research Assistant 

University of Kansas Aerospace Engineering 

Damping is a useful structural property whenever it is desirable to limit the amplitude of vibration.   
This is especially so when the amplitude of vibration is high enough to produce undesired noise or to 
result in structural failure through fatigue.  However, predicting damped vibration response requires 
knowledge of the relevant types of damping involved and some measure of the degree of damping, 
possibly for multiple types of damping.   For monolithic structure, either structural damping or 
fluidic damping tends to dominate.  For structure which is mechanically joined, Coulomb (or, 
“sliding-friction” damping) tends to dominate.  For structure treated with a well-engineered damping 
“treatment”, this treatment is typically the dominant source of damping.   

The problem at hand is the prediction of damping for beams and plates with and without uniform 
constrained layer damping (CLD).  CLD involves structural elements treated with a viscoelastic 
damping layer which is covered by a “constraining” layer.   Such 3-layer laminates are widely used 
to reduce vibration response.  The predictive method detailed here is the Analytical Power Input 
Method (APIM) [1], which is based on the experimental method of determining the damping loss 
factor, the Power Input Method (PIM) [2].  The APIM, like any analytical method, is dependent on 
the measurement of material properties, especially the damping loss factors for any viscoelastic 
layers present. 

Power Input Method
The power input method is based on measuring the damping loss factor, which is the ratio of the 
dissipated energy to the energy stored in the structure, per radian: 

S

D

E
E

2
      (1) 

Here,  is the energy dissipated per cycle and  is the maximum strain energy.  In most cases, the 
dissipated power is converted into heat, which cannot be easily measured.  For a steady-state 
vibration, the dissipated power of the system, , equals the input power, , from the excitation.  

The dissipated power is the energy dissipated per cycle, that is: 

DE SE

DP IP

DDD EE
T

P
2

1 , where T is the 

period of vibration. If the structure is driven at a single point, say via an electrodynamic shaker, the 
input power can be estimated from the time-averaged product of the force at the driving point tFf

and the velocity at the driving point tV f .  That is, tVtFPP ffID .  Usually the strain energy 
cannot be easily measured, so it is replaced with twice the kinetic energy :

SE

KE
v

KS dvtVEE 22 .

Now the loss factor in terms of time-averaged expression is  

v

ff

dvtV

tVtF
2

                  (2) 

To characterize the time-averaged quantities in terms of typical measurement quantities, the 
dissipated power is: 
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00

Re1Re10 dSYdSRtVtFP
ffffff FFffVFVFffD  (3) 

and the strain energy is: 

v
VV

v
VV

v
S dvdSdvRdvtVE

iiii

0

2 10   (4) 

where  is the cross correlation between the driving point force and velocity ; 0
ff VFR 0

iiVVR  is the 
auto-correlation of the velocity at point i;  is the density of the structure; 

ff VFS  is the cross power 
spectrum density between the driving point force and velocity; ffY  is the mobility (velocity/force) 
of the driving point; 

ff FFS  is the power spectrum density of the driving point force; 
iiVVS  is the 

power spectrum density of the i’th point velocity.  

But, practically, the kinetic energy can only be represented by a finite number of measurements, N,

representing the response over the whole structure: 
01

1 dSmE
iiVV

N

i
iS . This assumes that the 

excitation frequency varies from zero to infinity, but in a finite frequency-band 21, , the 
frequency-band averaged loss factor is defined as 

2

1

2

1

1

Re
,

dSm

dSY

ii

ff

VV

N

i
i

FFff

C                  (5) 

where C  is the center frequency of the frequency-band;  is the bandwidth; 1  and 2  are the 
lower and upper limits of the frequency-band.  For linear systems, 

ffii FFifVV SYS
2 , where 

ifY  is the mobility (velocity/force) between the driving point f and the point i. Finally the loss 
factor at a frequency  becomes  

2

1

Re

if

N

i
i

ff

Ym

Y       (6) 

Note that each term in Equation 6 can be measured directly. 
Analytical Power Input Method
The analytical estimation of loss factor differs from the experimental estimation in that the strain 
energy  can be calculated directly. The input power in Equation 3 takes an alternative form as  SE

ffffffffID YFYtFtVtFPP Re
2
1Re

22     (7) 

where fF  is the Fourier transform of tFf .  Thus, the loss factor can be written as 

S

fff

E

YF Re
2
1 2

      (8) 

This formulation can be implemented either analytically or computationally, for instance using the 
finite element method.  Modeling the discrete layers in a constrained layer damping treatment is easy 
with the finite element method—and modeling non-uniform treatment is also easy.  In any case, the 
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frequency-dependency of the viscoelastic material properties can be taken into account directly.   
And, any other type of damping may be implemented rather easily.  
Implementation
The PIM and the APIM have been compared with the more popular modal strain energy method [3]  
in the study of an aluminum plate with a uniform constrained layer damping treatment.  The figure 
below shows predicted damping loss factor for all 3 methods.  One general observation is that the 
power input methods are based on forced response—which involves numerous modes of vibration—
whereas the modal strain energy method is based on individual mode response.  As such, the APIM 
may be more relevant for evaluating damping in an operating environment.  The difference between 
methods is the greatest for the “lower” modes of vibration where the modal strain energy method 
significantly under-predicts damping.  Another observation is that the analytical and experimental 
implementations of the power input method only agree well in the “mid-frequency” range.  Some 
reasons for high frequency deviations have been discovered (experimental errors), but at low 
frequency, the reasons are elusive. 
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Further Discussion
The oral presentation will cover other demonstrations of the APIM on nomex-core sandwich carbon 
fiber beams with non-uniform constrained layer damping.  Analytical formulations for the APIM for 
uniformly-damped beams and plates will also be discussed. 
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Friction Induced Vibrations of a Rotating KIRCHHOFF Plate:

An Excitation Mechanism of Disk Brake Squeal

Daniel Hochlenert and Peter Hagedorn

Dynamics and Vibrations Group, Technische Universität Darmstadt, Germany

Introduction

The development and optimization of new brake systems with respect to their vibration behavior in general
involve costly experiments. In particular noise problems arising due to vibrations of the brake system in the
audible frequency range, such as brake squeal, require time-consuming noise tests. This experimental effort
can be reduced if appropriate mathematical-mechanical models are used for studying the dynamics of these
brake systems. In this context, especially the mechanism generating brake squeal deserves closer attention.

The present note is devoted to the modeling of self-excited vibrations of a rotating Kirchhoff plate
generated by friction forces. Special regard is given to an accurate formulation of the kinematics of the
frictional contact in three dimensions. The contact formulation is derived in the context of a minimal disk
brake model. The three dimensional contact kinematics arising in disk brakes yields essential properties
of the frictional contact which cannot be observed in two dimensional models. The minimal model is then
extended to a more complete disk brake model which can be used for parameter studies or a model-based
active suppression of brake squeal.

Minimal disk brake model

The minimal disk brake model depicted in Figure 1 consists of a rotating annular Kirchhoff plate in
frictional contact with idealized brake pads. The plate is fixed at its inner radius and free outside. It is
driven by a torque MAez such that the body fixed reference frame rotates with a constant angular velocity
Ωez. The idealized brake pads (negligible mass) are elastically supported (stiffness k, prestress N0) and
allowed to move in the ez-direction only. The transverse displacement of the mid surface is described in
polar coordinates by w(r, ϕ, t). Its potential and kinetic energy are

U =
1

2
D

�

A

�
∇2w
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and

T =
1

2
ρh

�

A

v2
M dA, (2)

respectively, where vM is the velocity of a point on the mid surface (cf. Figure 2). The equations of motion
can be derived using Hamilton’s principle

δ

� t2

t1

(T − U) dt = −

� t2

t1

δW dt, (3)

where the virtual work of the contact forces acting on the plate is given by

δW =

�

A

F · δp dA. (4)
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Figure 1: Rotating Kirchhoff plate with idealized
brake pads
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Figure 2: Contact kinematics of the Kirchhoff-Platte (eϕ-ez- and er-ez-plane)

Note that the displacements of the points of action of the contact forces have to be determined up to second
order since the variation implicates a derivative with respect to w(r, ϕ, t). In doing so, one has to consider
the distances ∆r and r∆ϕ due to the kinematics of the Kirchhoff plate as shown in Figure 2. On this
account it is obvious that in general the material points of the plate (P̃ and Q̃) in actual contact with the
pads have non-vanishing velocity components in all directions, especially in the er-direction. The contact
force acting on the upper contact point P consists of a component normal to the deformed plate (normal
force NP) and a component in the tangential plane at the contact point (friction force RP). The direction
of the friction force is given by the relative velocity between the contact points of the pad and the plate.
Finally, a force balance at the brake pad in ez-direction and Coulomb’s law |RP|=µ|NP| yield the contact
force at P depending on w(r, ϕ, t). The contact force at the lower contact point Q̃ can be calculated similarly
such that all ingredients for Hamilton’s principle are known.

Stability analysis

The operation deflection shape of a brake disk during squeal can be approximated to a good extent by a
doublet mode of a corresponding non-rotating Kirchhoff plate. Therefore, the energy and virtual work
expressions are discretized using

w(r, ϕ, t) = Rm,n(r)
�

c(t) cos mϕ + s(t) sin mϕ
�

, (5)

where Rm,n(r) cos mϕ and Rm,n(r) sin mϕ represent a pair of orthogonal eigenmodes corresponding to one
eigenfrequency close to the frequency of squeal. Excluding stick-slip at the contact points, it is possible to
linearize the resulting equations of motion for small s(t) and c(t) to study the stability of the system. The
equations of motion then read

Mq̈ + (D + G)q̇ + (K + N)q = 0, (6)

where the matrices for the pad’s position ϕ=0, r=rp are
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p,

k̂ = (ω2
m,n − m2Ω2)M, N̂0 = mN0
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p

.

The asymmetry of the matrix K+N makes the system susceptible to self-excited vibration. The matrix D+G

does not only contain the expected gyroscopic terms, but also an additional linear damping term resulting
from the kinematics of the plate and the frictional contact. It cannot be observed in two dimensional models,
since it is due to the fact that the friction force has a component in the radial direction of the disk. The
corresponding energy dissipation influences the stability of the trivial solution significantly and should not be
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neglected by assuming only a circumferential direction of the friction forces. Actually it can be shown that
neglecting this effect yields the instability of the trivial solution for any given set of parameters, requiring
only that K +N is not symmetric. The stability of the trivial solution can be studied using the ansatz
q(t) = q̂eλt and solving the eigenvalue problem for λ, where a positive real part corresponds to instability.
The root locus for a given set of parameters depending on the rotational speed Ω is shown in Figure 3.
Above a critical speed Ωc there exist eigenvalues with positive real part. That is to say the system shows
self-excited vibration, which can be interpreted as squeal.

Extension of the minimal model

The described minimal model is now extended to a disk brake model including brake pads with finite area
(cf. Figure 4), the caliper and the yoke of the brake system. Using a pointwise visco-elastic description
of the pad’s friction material, the contact formulation of the minimal model can be easily adapted. After
discretizing the rotating Kirchhoff plate in the mentioned fashion, the extended disk brake model has a
moderate number of degrees of freedom. Therefore, it is suitable for detailed parameter studies and may be
used as a basis for the model based active suppression of brake squeal.

Figure 5 exemplarily points out a result of the parameter study. The two plots show the stability bound-
aries depending on the rotational speed of the disk for a varying pad’s span angle. In the left plot the
brake model is adjusted to an operation deflection shape of the disk with 3 nodal diameters and a squealing
frequency of approximately 1750 Hz. The left picture corresponds to a squealing frequency of approximately
3200 Hz and 4 nodal diameters of the disk. It can be seen that the pad’s span angle has a strong influence
on the stability of the trivial solution. This dependency has practical relevance, especially in view of brake
pads with chamfers (an usual modification to improve the brake’s noise behavior) where the span angle con-
sequently changes with the wear of the pads. From Figure 5 it can be seen that a span angle corresponding
to the angle between two nodal diameters of the disk increases the region of instability and therefore the
tendency to squeal of the brake system.
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Figure 5: Regions of stability and instability depending on the rotational speed for varying span angle of the brake
pad (shape functions with 3 (left) and 4 (right) nodal diameters)
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Vibration of Sectorial and Skew Mindlin Plates with Corner Stress Singularities 

C. S. Huang and M. J. Chang 
Department of Civil Engineering, National Chiao Tung University, Hsinchu, Taiwan 

INTRODUCTION 
Plates in various geometric forms are commonly used in practical engineering. Stress 

singularities occur at the re-entrant corners of plates, for instance, at the re-entrant clamped 
corner of a cantilever skew plate. It is well known that the stress singularity behaviors have to be 
taken into account in order to perform more accurate numerical analyses. 

The present work analyzes skew and sectorial Mindlin plates, where such stress singularities 
exist. The Ritz method, widely applied to investigate the vibrations of structural components, is 
used to determine the vibration frequencies and mode shapes for such plates. The admissible 
displacement functions used in the present work consist of two sets of functions. One is the set 
of traditional polynomials, and the other is the set of corner functions. The corner functions are 
established from the asymptotic solutions provided by Huang [1] and McGee et al. [2] for both 
moment and shear force singularities at a corner of a Mindlin plate. Hence, the corner functions 
not only appropriately describe the singular behaviors at the re-entrant corner, but also meet the 
boundary conditions around the corner.  

SECORIAL PLATE 
Consider a completely free sectorial plate with radius R, thickness h, density , and flexural 

rigidity D. The stress singularities exist at the vertex when the vertex angle ( ) is larger than 
90o [1, 2]. When the Ritz method is applied to find the natural frequencies and mode shapes for 
such a plate, the admissible functions for displacement components are assumed as the sum of 
two sets of functions, 
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lkkr Wand,  are established from the asymptotic solutions presented in Huang [1] and 

McGee et al. [2]. For simplicity, it is set that 31 II = 75 II  and 8642 IIII . Table 
1 shows the convergence study for a sectorial plate with =355o.   

Table 1 Convergence of DhR /2  for a completely free sectorial plate  

with =355o and h/R=0.1 
(Ieven, Iodd)

mode no. 
No. of corner 

functions (16, 15) (18,17) (20,19) (22,21) (24,23) 

0 5.261 5.244  5.242  5.240  5.237 

10 2.757 2.748 2.744 2.737 2.735 
1

(A) 
20 2.741 2.739 2.735 2.731 2.730 

0 5.345 5.301  5.297  5.296  5.294 

10 4.238 4.233 4.231 4.229 4.229 
2

(S)
20 4.235 4.231 4.229 4.228 4.228 

0 8.881 8.854  8.849  8.843  8.839 

10 7.555 7.553 7.551 7.549 7.549 
3

(S)
20 7.554 7.552 7.550 7.548 7.548 

0 12.02 12.00  11.99  11.98  11.98 

10 7.592 7.586 7.583 7.581 7.578 
4

(A) 
20 7.584 7.583 7.580 7.578 7.577 

0 12.12 12.12  12.12  12.11  12.11 

10 11.24 11.23 11.23 11.23 11.23 
5

(S)
20 11.23 11.23 11.23 11.23 11.23 

      Note: (S) and (A) denote symmetric and antisymmetric modes, respectively. 

CANTILEVER SKEW PLATE 
Consider a cantilever skew plate having skew angle , spanwise length a, root width b, and 

tip width c. Following the same approach as described above and using different admissible 
functions that are suitable for the problem under consideration, one can obtain the accurate 
natural frequencies and mode shapes for the first five modes as shown in Fig.1. The 

parenthesized numbers are the dimensionless frequencies Dha /2 .
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Mode
b/a

1 2 3 4 5 

2

(4.270) (9.286) (18.20) (21.23) (27.12)
45

1.0

(4.299) (15.11) (26.35) (35.22) (55.21)

2

(5.238) (18.35) (23.19) (34.25) (40.06) 

75

1.0

(5.098) (23.78) (43.28) (55.88) (82.25)
Fig. 1  Natural frequencies and nodal patterns for trapezoid plates ( c/b=0.5, h/b=0.1 ) 
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Axisymmetric Vibrations of Thick Clamped
Circular Plates Revisited

James R. Hutchinson
Department of Civil and Environmental Engineering

University of California, Davis CA 95616

Introduction
At the Fifth International Symposium on Vibrations of Continuous Systems, I presented a paper en-
titled “The Crosswise Series Superposition Method in Solid Mechanics” [1].  In the conclusion to that 
paper I noted that Pickett [2] had reported that he had some convergence difficulties for the problem 
of axial compression of circular cylinders.  I also mentioned that I was having difficulty with a simi-
lar problem and would look into the matter further.  I postulated that the difficulty might occur when 
a fixed surface is adjacent to a free surface.  In looking over my past work, I discovered that I had 
previously solved a problem with a fixed boundary adjacent to a free surface in 1986 [3].  I decided 
to rerun the numbers in that problem in order to investigate convergence.  The problem is particularly 
well suited for this purpose because there are several approximate methods with which to compare it.  
Mindlin [4] introduced his thick plate theory in 1951.  Prior to that, in 1945 Pickett [5] developed a 
method for solving circular plate problems.  In a 1984 paper [6] I compared the Mindlin and Pickett 
solutions with a crosswise series solution for the vibrations of a free circular plate.  In that paper the 
results from all three methods were extremely close.  However, in the 1986 paper [3] on clamped 
plates, the Pickett solution presented difficulties.  In this paper I explain the difficulty and show how 
a better choice of boundary conditions clears up the problem.

Crosswise Series Method
In the crosswise series method, series are formed from solution forms of the governing equations.  In 
this case the governing equations are solutions of the three dimensional equations of linear elasticity 
in cylindrical coordinates.  For this reason I will also refer to this solution as the 3-D solution.  The 
coefficients in the series were chosen so that the boundary condition on the axial displacement w at the 
outside of the plate is identically zero, and so that the shear stress on the surface of the plate is identi-
cally zero.  The other two boundary conditions, of zero radial displacement u at the outside of the plate 
and zero normal stress on the surface of the plate are satisfied by orthogonality.  This leads to an eigen-
value matrix whose order is the number of terms in the radial direction NR plus the number of terms in 
the axial direction NZ.  As more terms in the series are chosen, the solution becomes more and more 
accurate.  From experience it has been found that more terms should be carried in the large direction.  
In fact, the number of terms should be chosen roughly in proportion to the two dimensions.

All quantities in this paper are dimensionless.  The radial displacement u, the axial displacement w,
and the dimensions r and z are made dimensionless by dividing by the outer radius a.  The natural 
frequency w is made dimensionless by multiplying by the outer radius and dividing by the shear wave 
velocity.  The distance h is the half thickness of the plate and is made dimensionless by dividing by 
the outer radius.  In other words, h is the thickness to diameter ratio of the plate.

Pickett Method
The Pickett method also makes use of the solution forms of the 3-D elasticity equations.  Instead of 
attempting to satisfy all boundary conditions, Pickett satisfies the equations on the surface of the plate 
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exactly.  This leads to a characteristic equation for the wave number.  Pickett showed that there were 
only two real roots for low frequencies.  For higher frequencies additional roots emerge from the com-
plex plane.  It was shown in reference [6] that these additional real roots represented higher disper-
sion curves, and it was also noted that the range of applicability of the Pickett solution was limited to 
frequencies less than the first emergence of these higher roots.  In reference [6] it was noted that the 
emergence occurs when wh equals 4.3, 4.7, and 4.4 for Poisson’s of 0.0, 0.3, and 0.5 respectively.  In 
this paper I used a Poisson’s ratio of 0.3 but limited the solution to wh < 4.5.

Because of only having two roots, the most that can be satisfied is two boundary conditions at r = a.  
In reference [3] I set the displacement at the center of the edge of the plate to zero (w(a,0) = 0) and 
considered four possibilities for fixing the slope: 1. Set the derivative of u with respect to z as zero.  
2. Set the integral of z times u as zero.  3. Set u at the top and bottom corners as zero.  4.  Set the de-
rivative of w with respect to r as zero.  These are listed in the order of edge fixity.  I expected that the 
boundary condition 2 would give the best answers but a very strange phenomenon occurred.  For those 
boundary conditions, there was a coalescence of the third and fourth mode natural frequencies near h
= 0.35.  In other words, the choice of boundary conditions led to a dynamic instability.  In writing this 
paper, it occurred to me that I should have used average displacement as well as average slope to get a 
best answer.  Thus for this paper I satisfy the displacement boundary condition by setting the integral 
of the axial displacement to zero and satisfy the slope boundary condition by setting the integral of 
z times the radial displacement to zero.  This choice gives much better answers without the dynamic 
instability.

Mindlin Method
The Mindlin plate theory is well known and derivations are given in references [4] and [6].  The only 
question in the Mindlin theory is what shear coefficient is best.  In reference [6] I derived a value of 
5/(6 – n) for low frequencies.  This is the coefficient used in this paper and can be seen to give a very 
close match with the 3-D and Pickett solutions.

Results
All results shown are for a Poisson’s ration of 0.3.  Table 1 shows how the 3-D frequencies converge 
as more and more terms are chosen in each series.  The columns under Clamped plate are newly de-
rived, while the columns under Free Plate are taken from reference [7].  It can be seen that the clamped 
plate converges at about the same rate as the free plate.  The main difference is that the free plate con-
verges monotonically from above whereas the clamped plate does not converge monotonically.  This 
is because of the boundary conditions.  A cylinder which is clamped on all boundaries also converges 
monotonically but from below.  It can also be seen from this table that the Pickett and Mindlin solu-
tions are reasonably close to the 3-D solution.  Figures 1 and 2 give comparisons of the Pickett and 
Mindlin  results respectively.  They show the frequency as a function of the thickness of the plate for 
the four lowest natural frequencies as the thickness to diameter ratio goes from zero to 1.  These com-
parisons show how good the approximate methods are in getting accurate answers, but also clearly 
indicate the range of applicability of these approximate solutions.

Conclusions
My previous concern about poor convergence in certain classes of problems was unfounded.  The 
3-D solution converges very well and provides an excellent basis for comparison of the approximate 
methods, both as to their accuracy and to their range of applicability.
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NZ NR MODE 1 MODE 2 MODE 3 MODE 4 MODE 1 MODE 2
4 20 0.908802 2.987344 5.632523 8.538286 0.851241 3.075969

20 100 0.908644 2.987720 5.634216 8.541349 0.832208 3.059589
40 200 0.908631 2.987701 5.634219 8.541386 0.831604 3.059075
60 400 0.908623 2.987681 5.634195 8.541366 0.831458 3.058951
120 600 0.908626 2.987692 5.634211 8.541384 0.831426 3.058924
160 800 0.908626 2.987691 5.634210 8.541384 0.831416 3.058915
200 1000 0.908626 2.987690 5.634209 8.541383 0.831412 3.058912

    0.906389 2.982478 5.620813 8.510873 0.831368 3.057512
    0.905371 2.977832 5.615918 8.513770 0.831405 3.058997

Mindlin
Pickett

Terms Clamped Plate Free Plate
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Table 1. Convergence of frequencies for a Clamped Plate compared to a Free Plate. h = 0.1

Figure 1. Frequency vs Thickness.
    (       ) 3-D Solution
    (-----) Pickett Solution
    (       ) Limit of Pickett Solution (wh = 4.5)......

Figure 2. Frequency vs Thickness.
    (       ) 3-D Solution
    (-----) Mindlin Solution
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Bounded Eigenvalues of Completely Free Rectangular 
Plates

Y. Mochida 
and S. Ilanko 

Department of Engineering, Uni. of Waikato, Hamilton, New Zealand 

The vibration of the completely free rectangular plate has a long research history. Such 
problems were often analysed by using approximate methods, for example the Rayleigh-Ritz 
method, because it is difficult to find functions that simultaneously satisfy the governing 
differential equation and the boundary conditions of free edges. An excellent review of the 
literature relating to vibration analysis of plates was published by Leissa [1]. Most of these 
methods give upper bounds for the eigenvalues as the solution is either based on assumed 
shapes that effectively overconstrain the system or using the superposition [2] of exact 
solutions for plates with more constraints. Among the upperbound solutions, Gorman‘s 
superposition method [2,3] is very efficient and appears to give the lowest upperbound values 
for the natural frequencies of plates with various aspect ratios. Here, we present some lower 
bound results obtained using the Finite Difference Method (FDM) that are very close to the 
results reported by Gorman. 

It is known that the finite difference method (FDM) gives lower bounds for the natural 
frequencies [4]. The partial differential equation governing the out-of-plane vibration of 
rectangular plates is [5].
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Equation 1 was approximated in the finite difference form, in terms of the nodal 
displacements. The eigenvalues ( Dma /2 ) of first eight modes for different aspect 
ratios were computed and compared to the eigenvalues in earlier literature. 

Table 1 shows the non-zero eigenvalues of completely free thin rectangular plates with 
aspect ratios 1.0 to 3.0 obtained by the FDM. As the plate has two axes of symmetry, the 
modes are classified into four categories, labelled SS, AA, SA and AS indicating that the 
modes are symmetric about both the x axis and y axis, antisymmetric about both axes, 
symmetric about the x axis and antisymmetric about the y axis, and antisymmetric about the x 
axis and symmetric about the y axis respectively. The natural frequencies obtained by the 
method of superposition [2] are also shown in Table 1. The results obtained by using the 
FDM exhibit excellent agreement with Gorman’s results, and as expected, the FDM results 
are slightly lower than those obtained from the method of superposition. 
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Table 1. The eigenvalues and mode shapes of completely free thin rectangular plates 
by the FDM and the method of superposition. Dma /2  = 0.3, 

 = 1 1.5 2 3
Mode FDM SM FDM SM FDM SM FDM SM

1 13.46 13.47 AA 8.926 8.931 AA 5.358 5.366 SS 2.379 2.382 SS
2 19.57 19.60 SS 9.503 9.517 SS 6.640 6.644 AA 4.373 4.375 AA
3 24.24 24.27 SS 20.57 20.60 SA 14.60 14.62 SA 6.596 6.617 AS
4 34.75 34.80 22.15 22.18 SS 14.85 14.90 AS 9.233 9.244 SA
5 34.75 34.80

SA
AS 25.58 25.65 AS 21.97 22.00 SS 12.96 13.03 SS

6 60.90 61.09 29.73 29.79 AS 25.31 25.38 AA 15.04 15.07 AA
7 60.90 61.09

SA
AS 38.05 38.16 AA 25.96 26.00 AS 21.16 21.31 AS

8 63.56 63.69 SS 43.84 43.93 SS 29.53 29.68 SS 22.19 22.23 SS

Convergence test were carried out for all the above aspect ratios and modes and results for 
the fundamental frequency of a square plate are presented in Figure 1. As can be seen from 
the figure, both methods give results that converge as the matrix size is increased. The rate of 
convergence of the FDM is significantly slower than that of the superposition method but for 
all cases tested the convergence was from below as predicted by Weinberger [4]. The work 
shows that Gorman’s superposition method gives excellent convergence in its results for the 
fundamental eigenvalues with only 20 terms [2]. These results also confirm the prediction in a 
recent paper [3] that Gorman’s results are expected to be upper bound for a free plate. The 
first author generated the results for a free plate using the superposition method for various 
aspect ratios and numbers of terms. Thus the exact natural frequencies of a completely free 
plate are bracketed by the results of the FDM and the method of superposition. 
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Figure 1. Fundamental natural frequencies of a square plate by the 
FDM and the method of superposition 

In Table 2 the eigenvalues obtained by using the FDM are compared with the results 
published by Leissa [1]. The upper bound and lower bound results in Leissa’s publication 
were taken from reference [6]. The present results are higher than the previously published 
lower bounds and very close to the upper bounds indicating these may be the best lower 
bound solutions available to date. The presented FDM results together with published results 
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by the popular upperbound methods, such as the superposition method, give an estimate of the 
maximum possible error in the values of the natural frequencies of completely free plates. 

Table 2 Comparison of eigenvalues obtain by FDM with those in Leissa’s 
publication [1] for the doubly antisymmetric modes of the square 
free plate (  = 0.3) 

Present Liessa
Lower bound Upper bound 

b/a = 1 
13.46 13.092 13.474
69.04 66.508 69.576
76.95 75.146 77.411

b/a = 1.5 
8.926 8.6667 8.9351
38.05 36.651 38.294
66.50 64.844 66.965

b/a = 2 
6.640 6.4563 6.6464
25.31 24.417 25.455
58.32 56.151 59.051
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NOMENCLATURE 
a  plate dimension in x direction 
b  plate dimension in y direction 
E  modulus of elasticity of material 
D  plate flexural rigidity, (Eh/12)/(1- 2)
m mass per unit area of plate 

  radian frequency of vibration 
  aspect ration of half plate b/a

  Poisson’s ratio of material 
  = Da /2
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Symplectic Elasticity Approach for 
Free Vibration of Rectangular Thin Plates 

C.W. Lim 
Department of Building and Construction, City University of Hong Kong, Hong Kong, P.R. China 

Abstract

Using a new symplectic method commonly applied by theoretical physicists, a new symplectic elasticity 
approach is developed for deriving exact analytical solutions to some long standing basic problems in free 
vibration of rectangular thin plates with any boundary conditions where exact solutions are hitherto 
unavailable.  Employing the Hamiltonian principle with Legendre’s transformation, analytical free vibration 
solutions could be obtained by eigenvalue analysis and expansion of eigenfunctions in both lengthwise and 
widthwise directions.  Unlike the classical semi-inverse approaches using trigonometric, hyperbolic and/or 
Bessel functions where a trial amplitude function is pre-determined, this new symplectic approach is 
completely rational without any guess functions and yet it renders exact solutions beyond the scope of 
applicability of the semi-inverse approaches.  In short, the symplectic approach developed in this paper 
presents a new approach in an area previously unaccountable in classical mechanics and the semi-analytical 
approach forms a limited sub domain of this new approach.  Examples for plates with selected boundary 
conditions are solved and the exact solution is discussed.  Comparison with the classical solutions shows 
excellent agreement.  As the derivation of this new approach is fundamental, further research can be 
conducted not only for other types of boundary conditions, but also for thick plates as well as bending, 
buckling, wave propagation, etc. 

1. Introduction 

A symplectic group is a mathematical group and symplectic geometry was first used by Weyl [1] and the 
theory can be referred to Koszul and Zou [2].  The symplectic space was employed in a number of fields in 
physics and mathematics for many years, such as in relativity and gravitation [3], and classical and quantum 
mechanics [4], etc.  In elasticity and Hamiltonian mechanics, the computational symplectic Hamiltonian 
systems including fluid dynamics was first developed by Feng and his associates [5,6].  In these papers, 
Feng and his associates proposed symplectic algorithms on dynamical systems.  These algorithms are 
superior to conventional algorithms in many practical applications, such as celestial mechanics, molecular 
dynamics, etc.  Feng’s contribution in symplectic algorithm was particularly significant and important as 
stated in a memorial article dedicated to him by Lax [7]. 

Without computational algorithm [5,6], Zhong and his associates [8,9] and Lim et al. [10] developed a 
new analytical symplectic elasticity approach for some basic problems in solid mechanics and elasticity 
which have long been bottlenecks in elasticity.  It is based on Hamiltonian principle with Legendre’s 
transformation and analytical solutions could be obtained by expansion of eigenfunctions.  It is rational and 
systematic with a clearly defined, step-by-step derivation procedure.  It resolved systematically many basic 
problems in free vibration of rectangular thin plates previously unsolvable [11-13].  For instance, benchmark 
exact analytical bending solutions have been solved by Lim et al. for thin plates without two opposite sides 
simply supported [14] and for corner supported rectangular thin plates [15]. 

Based on the symplectic approach, first-known exact analytical solutions for free vibration of rectangular 
thin plates are presented here.  Examples for thin plates with selected boundary conditions are solved and 
the exact solutions discussed.  Comparison with the classical solutions shows excellent agreement.  As the 
derivation of this new approach is fundamental, further research can be conducted not only for other types of 
boundary conditions, but also for thick plates as well as bending, buckling, wave propagation, etc. 

2. Symplectic Formulation 

Consider a rectangular thin plate with length 2a  and width 2b , the energy functional is 
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2 2
1

1
2

U hw dxdy  (1) 

where U  is the strain energy,  the vibration angular frequency,  the density per unit volume, h  the 
plate thickness, and w  the displacement amplitude. 

From the Hellinger-Reissner variational principle [16], and denoting z x z  where z is a dummy 
variable and the others are common notations, it can be shown that 

2 Vw M H dxdy  (2) 

where H  is the Hamiltonian function.  The variables are w ,  and the complementary variables are xV ,

xM  or V , M  briefly.  These variables form a state vector Tw V Mv  in the symplectic space.  
Performing variation on the Hamiltonian function H , we obtain 

v Hv (3)
where H  is the Hamiltonian matrix.  Upon separating the variables, the state vector can be expressed as 

,x y x yv  (4) 
Substituting into Eq. (3) yields 

xx e  and H =  (5) 

where  is the eigenvalue and T
w V M  is the eigenvector in which the elements are 

functions of y .  Expressing T yA B C D e  and substituting into Eq. (5) yield the eigenvalues 

2
1,2 /h D  and 2

3,4 /h D  (6) 
for nontrivial solution.  The state vector can be solved by back substituting  and  into Eq. (4). 

For an opposite simply supported plate at y b , the boundary conditions are 

0 ; 0y y by b
M w  (7) 

for an opposite clamped plate at y b , the boundary conditions are 

0 ; 0
y b

y b

ww
y

 (8) 

and for an opposite free plate at y b , the boundary conditions are 

0 ; 0y yy b y b
M V  (9) 

From the property of symplectic adjoint orthogonality of eigenvector and expansion of eigenvector, the 
state vector can be expanded as 

n xf n e nv  (10) 

where f n  is an unknown function depending on the boundary conditions at x a .

3. Examples 

This example considers a rectangular plate with opposite sides clamped.  The nonzero eigenvalues for 
symmetric vibration modes are solved first.  Substituting the general solution of Eq. (3) into the clamped 
boundary conditions in Eq. (8) and setting the determinant to zero result in 

2 1 2 1 1 2cosh sinh sinh cosh 0b b b b  (11) 
which can be solved for the eigenvalue .  The displacement can be solved as 
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3 1 1 3cosh cosh cosh coshw b y b y  (12) 
Similarly for antisymmetric vibration modes, the transcendental equation is 

3 1 3 1 1 3sinh cosh cosh sinh 0b b b b  (13) 
and the displacement is 

3 1 1 3sinh sinh sinh sinhw b y b y  (14) 
The next example considers a rectangular plate with opposite sides free.  The nonzero eigenvalues for 

symmetric vibration modes are solved first.  Substituting the general solution of Eq. (3) into the free 
boundary conditions in Eq. (9) and setting the determinant to zero result in the following transcendental 
equation

2 2 2 2 2 2 2 2 2 2
2 2 1 2 1 1 1 2 1 22 sinh cosh 2 sinh cosh 0b b b b  (15) 

which can be solved for the eigenvalue .  The displacement can be solved as 
2 2 2 2

3 3 1 1 1 3cosh cosh cosh coshw b y b y  (16) 
Similarly, for antisymmetric vibration modes, the transcendental equation is 

2 2 2 2 2 2 2 2 2 2
3 3 1 1 3 1 1 3 1 32 sinh cosh 2 cosh sinh 0b b b b  (17) 

and the displacement can be solved accordingly. 

4. Conclusions 

In this paper, a new symplectic elasticity approach has been presented.  Analytical benchmarks for free 
vibration of rectangular thin plates have been presented for some cases where analytical solutions have been 
hitherto unavailable.  For example, the paper presents analytical solutions for free vibration of completely 
free rectangular thin plates in which all natural and geometric boundary conditions are satisfied.  The new 
approach has very high potential for exact plate bending solutions. 
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Similarly for antisymmetric vibration modes, the transcendental equation is 
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and the displacement is 
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The next example considers a rectangular plate with opposite sides free.  The nonzero eigenvalues for 

symmetric vibration modes are solved first.  Substituting the general solution of Eq. (3) into the free 
boundary conditions in Eq. (9) and setting the determinant to zero result in the following transcendental 
equation

2 2 2 2 2 2 2 2 2 2
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2 2 2 2
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Similarly, for antisymmetric vibration modes, the transcendental equation is 

2 2 2 2 2 2 2 2 2 2
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and the displacement can be solved accordingly. 

4. Conclusions 

In this paper, a new symplectic elasticity approach has been presented.  Analytical benchmarks for free 
vibration of rectangular thin plates have been presented for some cases where analytical solutions have been 
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A Theory of Stability of a Moving Oscillator on an Infinitely Long, 
Flexibly Supported Beam

Andrei V. Metrikine 
Delft University of Technology, The Netherlands 

In the mid-1980s, Denisov et. al. [1] and Bogacz et. al. [2] have shown that a linear oscillator 
that moves along an infinitely long, straight beam on a viscous-elastic foundation can be unstable. 
The instability implies that the initial transverse deflection of the moving oscillator grows in time 
until the contact between the oscillator and the beam is broken. 

During the last ten years, a number of papers have been published [3-6], in which the 
instability of various moving objects on one-, two- and three-dimensional elastic structures has been 
considered. The interest in the subject is driven by the massive introduction of high-speed trains, 
whose stability at high-speeds greatly depends on dynamic interaction between the train wheels and 
the rails.  

In the present work, the above-described instability phenomenon is first introduced by 
analyzing the natural frequencies of a two-mass oscillator that moves along a flexibly supported 
Euler-Bernoulli beam as shown in Figure 1(a).  
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Figure 1. Moving oscillator on (a) continuously supported beam, (b) periodically supported string. 

The natural frequencies of the oscillator can be real or complex, depending on the velocity of 
the oscillator and the system parameters. The imaginary part of the complex frequencies can be 
either negative or positive corresponding to decaying or growing (unstable) vibration, respectively. 
The complex natural frequencies occur because of the energy input by a force that maintains uniform 
motion of the oscillator along the beam and because of radiation damping associated with flexural 
waves that the vibrating oscillator generates in the beam.  

To explain the different possible types of natural vibration of the oscillator, the energy and 
momentum variation in the system are studied on the basis of the following equations [7,8]: 

0 00 0

0 0
, ,

x vt x vt

x vt x vt

dE dPS ve Rv F vp R
dt dt

                          (1) 



32 International Symposium on the Vibrations of Continuous Systems, July, 2007

where  and  are the energy and the longitudinal component of the momentum of the oscillator, 
 is the oscillator’s velocity, 

0E 0P
v R  is an external force that maintains the uniform motion of the 
oscillator along the beam,  and  are the energy flux through a cross-section of the beam and the  
linear energy density of the supported beam, and  and 

S e
F p  are the flux and density of the wave 

momentum. 

Using the energy and momentum variation laws given by Eq. (1), it is shown that the three 
regimes of natural vibration of the oscillator (harmonic, decaying and growing) are one-to-one 
related to the possible regimes of wave generation in the beam. Harmonic oscillations occur if the 
vibrating oscillator does not generate evanescent (not propagating) waves in the beam. Decaying and 
growing oscillations occur when the oscillator generates propagating waves in the beam. These 
waves can be either “normal Doppler waves” or “anomalous Doppler waves” according to the 
terminology introduced in [9]. Reaction of the former waves decreases the energy of the oscillator, 
whereas that of the latter increases it. It should be noted that the anomalous Doppler waves may be 
generated by the oscillator only if it moves at a velocity higher than the minimum phase speed of 
flexural waves in the beam. Therefore, the oscillator, when moving on a homogeneous system, may 
become unstable only if its velocity is high enough. 

The above analysis of the energy variation of the oscillator shows that the energy increase in 
the unstable regime is due to the force that maintains the oscillator’s motion along the beam. This 
force is essentially horizontal (directed along the beam), and, therefore, the work of this force may 
strongly depend on the description of longitudinal dynamics of the beam (friction in the contact, 
longitudinal vibrations, etc.). To check this, coupled transversal-longitudinal vibrations of the beam 
are considered, taking into account friction in the contact and longitudinal stiffness of the beam’s 
elastic foundation. It is shown that due to the contact friction, a non-negligible axial compression 
and axial tension occur in front of and behind the oscillator, respectively (the compression and 
tension interchange their locations if a driving wheel of the train’s locomotive is modeled by the 
oscillator). These axial forces strongly depend on the velocity of the oscillator. The higher the 
velocity of the oscillator and/or the higher the longitudinal stiffness of the beam’s foundation, the 
stronger is the effect of friction in the contact on the stability of the oscillator.

If a beam on elastic foundation as shown in Figure 1(a) would be considered as a realistic 
model for the railway track, the instability of a train would be predicted to occur at train velocities 
higher than 2000 kilometers per hour, which is unreachable for high-speed trains (unless vacuum 
would be created in a tunnel in which the trains would run). However, the beam on elastic 
foundation is totally unacceptable as a model of railway tracks for high-speed trains. The main 
drawback of this model is that it does not account for dependence of the stiffness of the railway 
track’s subsoil on the frequency and wavelength of vibration of the rails. To show the effect of this 
dependence, a three-dimensional model is considered of a railway track that consists of a beam on a 
viscous-elastic half-space. It is shown that the instability may occur as soon as the oscillator’s 
(train’s) velocity would exceed the Rayleigh wave velocity in the half-space. This velocity can be as 
low as 200 kilometers per hour if the railway track is built on soft subsoil, which is currently the case 
in some parts of Sweden, the Netherlands and China. Therefore, the instability phenomenon is of 
practical significance. 

All models discussed above are homogeneous in the direction of motion of the oscillator. 
One may wonder whether a certain inhomogeneity of the model would influence the instability 
phenomenon. This question has a strong engineering background because nearly all railway tracks 
and overhead catenary lines for trains (the instability may occur also in the course of interaction of a 
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current collector of a train with the overhead contact wire) are periodically inhomogeneous along 
their length. It can be anticipated that the periodical inhomogeneity can influence the instability 
phenomenon strongly because the anomalous Doppler waves can be generated in inhomogeneous 
systems at any speed of the oscillator [9]. Another, probably more “mechanical”, reason for 
anticipating a significant effect of the periodical inhomogeneity on the system stability can be 
formulated as follows. The parameters of a periodically-inhomogeneous elastic system at the contact 
point with the moving oscillator vary periodically in time provided that the oscillator’s velocity is 
constant. The period of this variation equals d v , where is the spatial period of inhomogeneity 
and  is the oscillator’s velocity. Obviously, one may expect parametric resonance if one of the 
natural frequencies of the oscillator on the elastic system equals 

d
v

2nd v .
To explore the effect of the periodical inhomogeneity, the stability is studied of the moving 

oscillator on a string supported by periodically spaced discrete supports as shown in Figure 1(b). 
This model mimics simplistically the dynamic interaction of an overhead power line and the current 
collector of a train. It is shown that, as expected, parametric instability zones exist in the parameter 
space of the system. The size of these zones strongly depends on the stiffness and viscous damping 
in the supports of the string. The stiffer the supports, the wider are the zones. The effect of the 
damping is ambiguous. The higher-order zones become narrower as the damping increases, whereas 
the main zone widens. The latter effect can be explained by the fact that a higher damping in the 
supports increases their dynamic stiffness thereby causing a larger energy input into the system by 
the force that maintains the uniform motion of the oscillator along the string. 
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1. Introduction   Experimental results are presented on chaotic vibrations of a thin rectangular plate
subjected to periodic lateral excitation. The plate is clamped at opposite edges and is simply supported 
at the other edges. The plate is buckled by an in-plane elastic constraint at the clamped edges. Chaotic
responses are examined with the Poincaré projections and the Lyapunov exponents. Contribution of 
vibration modes to the chaotic responses of the plate is inspected with the Karhunen-Loève 
transformation.

2. Test Plate and Test Procedure   As shown in Fig.1, a phosphor-bronze plate with thickness
h=0.24 mm, square form of length a=140 mm is clamped at opposite edges. The other edges are
simply-supported by adhesive flexible films. The plate is initially compressed to the post-buckled
configuration with the elastic spring in the in-plane direction normal to the clamped edges. In the
figure, the coordinate system is defined by the x-axis along the simply-supported edge, the y-axis
along the clamped edge and z-axis perpendicular to the mid-plane of the plate. In the experiment, first, 
the restoring force and the linear natural frequencies of the post-buckled plate are examined. Next, the 
plate is excited laterally with an electromagnetic exciter. The plate is subjected to gravitational
acceleration g  and periodic acceleration adcos2 f t, where f is the exciting frequency and ad is the peak 
amplitude of acceleration. Dynamic responses of the plate are measured with multiple laser 
displacement sensors and recorded for the data analysis. Chaotic responses are inspected with the 
frequency response curves, the Fourier spectra, the Poincaré projections and the maximum Lyapunov 
exponents. Finally, the chaotic responses on the multiple positions of the plate are measured. Mode
contribution to the chaos is discussed with the K-L transformation.

3. Results and Discussion   The results of the experiment are arranged with the following non-
dimensional notations.

[ , ] = [x, y] / a, w = W / h, nx =Nx /Ncr, [ps, pd] = [g, ad] a4 / D, qs = Qsa2 / Dh,
[ , mn] = [ f , fmn] (2 / 0), = 0 t  (1)

where 0 = a –2 D / h  is the coefficient corresponding to lateral vibration of the plate. Notation
D = Eh 3 / {12(1– 2)}  is the bending rigidity of the plate, where E is Young's modulus and  is 
Poisson's ratio. In Eq. (1),  and  are the non-dimensional coordinates, w is the lateral displacement
normalized by the plate thickness h. The symbol nx is the non-dimensional stress resultant, normalized 
by the buckling resultant Ncr, acting on the cross section perpendicular to the x-direction. Notations ps
and pd are the non-dimensional load intensities related to the gravitational acceleration g  and the 
periodic peak acceleration ad, respectively. When the restoring force of the plate is examined, static
deflection under the static concentrated force Qs is measured. Notation qs is the non-dimensional
force. Notations  and are the nondimensional exciting frequency and the time, respectively. In the 
experiment, the static load intensity by the gravity ps and the amplitude of periodic excitation pd are 
chosen as ps = 337 and pd = 688 , respectively.

   Figure 2 shows the static deflection w of the plate under the concentrated force qs loaded at the 
center = 0.5 and = 0.5. The deflections at four points are detected. When the force increases from 
the stable equilibrium position to the positive z direction, the plate deflections show the characteristics 
of a hardening spring. As the force is loaded to the negative z direction, the spring characteristics
change to the softening-and-hardening type. When the force qs is close to qs = -30, the gradients of the 
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curves of the force decrease to zero-value. Consequently, the large-amplitude of lateral deformation
appears in the plate. Table 1 shows the linear natural frequencies mn where m and n denote the 
half-wave numbers of the vibration modes along the x-axis and the y-axis, respectively. In the table, the 
lowest natural frequency 1 1=34.9 is close to one third of the natural frequency 13 =101 of the mode 
with two nodal lines along the x-axis. This relation implies the possibility of the existence of internal 
resonance.

   Nonlinear response curves of the plate are presented in Fig. 3. The amplitude of response at the
position = 0.6 and = 0.4 is shown with the root mean square value. The resonance response is 
denoted by the symbol (m, n; p) with the mode of vibration (m, n) and the type of resonance p. For 
example, p = 1 and p = 1/2 represent the principal resonance and the sub-harmonic resonance of 1/2 
order, respectively. The large amplitude response (1, 1; 1) is generated from the principal resonance of 
the lowest mode of vibration. The nonlinear response exhibits the characteristics of a softening-and-
hardening spring. A chaotic response is denoted with the symbol C(m, n; p), where indices m and n
represent a predominant mode of vibration generated in the chaos and index p is the type of resonance. 
For example, C(1, 1; 1/2) denotes the chaotic response of the fundamental mode generated from the
sub-harmonic resonance of 1/2 order. C(m, n; p: i, j; q) represents the chaotic response involving the
response of internal resonance.  In Fig. 4, the time progress, the Fourier spectrum and the Poincaré
projection of the chaotic response C(1,1;2/3) are shown, at the exciting frequency =41.6. The time 
progress of the response w is presented by the number of excitation period e. In Fig. 4(b), broad band 
spectrum is observed. Dominant peaks of the spectrum correspond to the ultra-sub harmonic
resonance of order 2/3 with the lowest  mode of vibration. In Fig. 4(c), the Poincaré projection shows
the distinct figure in the space of deflection and velocity. When the exciting frequency ranges from 

=50.9 to =57.0 and from =58.5 to =67.7, as shown in Fig. 5, the predominant chaotic response
of the type C(1,1;1/2) prevails in a relatively wide range of frequency. Furthermore, as shown in Fig.6, 
when the exciting frequency increases to =66.8, the chaotic response of the type C(1,1;1/2) is 
dominated by the internal resonance condition of 3 1 1 1 3. Irregular amplitude modulation of chaotic
response is observed. Consequently, the chaotic response C(1,1;1/2:1,3;3/2) involves both the sub-
harmonic component of order 1/2 with the lowest mode of vibration (1,1) and the ultra-sub harmonic
component of order 3/2 with the mode of vibration (1,3). Figure 7 shows the maximum Lyapunov 
exponents max related to the embedding dimension e of the chaotic responses. The maximum 
Lyapunov exponent max=1.3 is obtained in the chaotic response C(1,1;2/3) at =41.6, while  max=1.4
in the response C(1,1;1/2) at =54.3. The chaotic response C(1,1;1/2:1,3;3/2) related with the internal
resonance at =66.8 shows the exponent within max=0.2 and max=0.4. The maximum Lyapunov 
exponents converge to the positive constants, then these responses are confirmed as chaos. 

   The Karhunen-Loève transformation can estimate the contribution of vibration modes to the chaotic 
response of the post-buckled plate. The chaotic time progresses of deflection are measured
simultaneously at six positions of the plate. Applying the K-L transformation to the data of the chaotic
response of C(1,1;2/3) at =41.6, the contribution ratio and related modal pattern are shown in Fig. 8. 
The lowest mode (1,1) has the largest contribution ratio 1=87%. The second larger contribution ratio
of 2=7% corresponds to the mode (1,2), while the third one 3=3% is related with the higher modes 
(1,3) and (3,1). For the other chaotic responses, including the former one, the contribution ratios and 
the corresponding modal patterns are shown in table 2. The chaotic response of C(1,1;1/2) is 
generated close to the natural frequency of the mode (1,2). Thus, the contribution ratio of the second
mode (1,2) increases to 2=17% compared with the contribution ratio 1=70% of the lowest mode 
(1,1). In the chaotic response C(1,1;1/2:1,3;3/2) with the type of internal resonance, the lowest mode of 
vibration(1,1) and the degenerated mode combined with (1,3) and (3,1) are generated simultaneously
with the contribution ratio 1=77% and 2=16%. The corresponding modal patterns are shown in Fig. 
9.
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4. Conclusion   Precise experimental results are presented on chaotic vibrations of a post-buckled
plate clamped at opposite edges. Chaotic responses are generated from the sub-harmonic resonance of 
1/2 order and from the ultra-sub harmonic resonance of 2/3 orders with the lowest mode of vibration. 
In the specific region of the latter one, the chaotic response is dominated by the internal resonance.  In 
the chaotic responses, the lowest mode of vibration and the mode with the nodal lines perpendicular to 
the clamped edges are predominantly induced.
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FREE VIBRATION OF SHALLOW SHELLS WITH GENERAL SURFACES 
EXPRESSED BY A CUBIC POLYONOMIAL FUNCTION 

Yoshihiro Narita and Daisuke Narita 
Department of Mechanical Engineering, Hokkaido University, Sapporo, 060-8628 Japan 

e-mail: ynarita@eng.hokudai.ac.jp

1. Introduction 
This study proposes an analytical method to deal with the free vibration of shallow shells with generally curved 

surfaces expressed by cubic polynomial functions. Such shell structures with variable curvature are recently found 
in automobile and other design-oriented structural applications. In the analysis an interpolating function of the third 
order is introduced to represent the required surface shape and the corresponding curvature is derived as a linear 
function of the position. The obtained curvature is substituted into the total potential energy of the shell, and the 
analytical procedure is shown to derive a frequency equation by the Ritz method. Numerical examples demonstrate 
that the vibration of shallow shells with various curved surfaces can be analyzed by the present method, and the 
effects of varying the coefficients in the cubic function for geometric expression are clarified on the natural 
frequencies and mode shapes.  Although there have been some papers on 
shallow shells with slightly non-uniform curvature [1.2], very little has been  
done on shallow shells with general curvature given by polynomial functions.  

2. Vibration Analysis 

A rectangle-like shallow shell whose planform has a dimension of a×b
(h: thickness) is considered, as shown in Fig.1, and the height (shell 
height) of the shell middle-plane from the xy plane is interpolated in the 
third polynomial as  

2 2 3 2 2 3
0 10 01 20 11 02 30 21 12 03( , )x y c c x c y c x c xy c y c x c x y c xy c y  (1) 

where c0, c10 … c03 are unknown coefficients to be determined by 
interpolating with the representative points of shell geometry.   

Based on an assumption ( / x) 2= ( / y) 2=0 where the slope of the shell geometry is relatively small, the 
curvatures are obtained by differentiating Eq.(1) twice as 

20 30 21 02 12 03 11 21 12
1 1 12( 3 ), 2( 3 ), 2 2
x y xy

c c x c y c c x c y c c x c y
R R R

                (2) 

Equation (2) indicates that the curvatures vary in linear fashion. The coefficients c0, c10 and c01 are not included in the 
curvatures and those of (c20 and c30) and (c02 and c03) appear only in 1/Rx and 1/Ry, respectively.  The twisting 
curvature is generated by c11, c21 and c12 in the terms of products of x and y in Eq.(1).  In the Donnell-type thin shell 
theory, the relations between the middle-plane displacements (u, v and w) and the strains ( x, y and xy) are given by 

x
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Fig.1 Example of shallow shell with general 
cubic surface 
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 2

y
2, ,x y x

x y x y

u w v w u v w
x R y R y x R

                            (3) 

The difference between the present and conventional shell analyses is characterized by the fact that the curvatures in 
Eqs.(3) are not constant but linear functions of the coordinate (x,y).
   In using the Ritz method, one has to evaluate the strain energy s bs bV V V V , where Vs is the energy caused 
by the in-plane motion, Vbs is the energy by the coupling and Vb is the energy by out-of-plane motion. 

1 1 1, ,
2 2 2

T T TT
s bs bV A dxdy V B B dxdy V D dxdy         (4) 

where { } and { } are the strain and curvature vectors, and the stiffness matrices are given here for the isotropic 
materials.  The kinetic energy for the shell is also defined. 

Next, the displacement functions are assumed by the double series form as  

1 1 1 1 1 1

0 0 0 0 0 0

( , , ) ( ) ( )sin , ( , , ) ( ) ( )sin , ( , , ) ( ) ( )sin
M N M N M N

ij i j kl k l mn m n
i j k l m n

u t P X Y t v t Q X Y t w t R X Y t  (5) 

where Pij, Qkl and Rmn are unknown coefficients and Xi( ), Yj( ),… and Yn( ) are the functions that satisfy the 

geometrical boundary conditions. After the equations are rewritten by using the non-dimensional quantities, the 
displacements (5) are substituted into the functional L=Tmax- Vmax in terms of the maximum strain and kinetic 
energies.  Then an eigenvalue equation is derived by the minimizing process L/ Pij = L/ Qkl = L/ Rmn.

3. Numerical Results and Discussions 

 The variable curvatures for 1/Rx, 1/Ry and 1/Rxy are described by 
Eq.(2). The coefficients cij (i,j=0,1,2,3) are arbitrary, and the number 
of combinations will be innumerable even when the coefficients are 
made discrete numbers.  In the examples, the standard shape of the 
present shallow shell is set up for reference purposes. This is a 
model of bonnet (hood) of an automobile, as shown in Fig.2, 
denoted by NUC (Non-Uniform Curvature) model.  The NUC 
model has a shape of height  

( / 2, ) ( / 2, ) ( , / 2) 0, (0, / 2)a y a y x b b H                     (7) 
The material is isotropic (Poisson’s ratio =0.3), and the frequency parameter is made non-dimensional with the 
representative length and Young’s modulus as = a2( h/D)1/2 with D= Eh3/12(1- 2).  The NUC model here has 
the thickness of h/a=0.01 and the aspect ratio of square planform (a/b=1).  The frequency parameters and vibration 
mode shapes are calculated to study effects of varying the coefficient values in the curvatures (2) for the simply 
supported shallow shells.   

Figure 3 presents contour plots of the mode shapes for the lowest four modes with the frequency parameter 1,
2, 3 and 4.  The corresponding shell geometry before deformation is illustrated in each row. The mark “×” 

represents the maximum displacement point and the thin lines denote the displacement contour lines.  The thick 
lines represent the nodal lines (i.e., lines of zero displacement).  In Fig.3(a), the result for a NUC model is given 
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with the coefficients c00=0.03157, c01=0.0635, c20=-0.127 and c21=-0.254 in Eq.(1), where the maximum height is the 
same as a cylindrical shell with a/Rx=0.5, and is used as a base for comparison.  When the number of a half wave is 
used to describe the mode shapes, the first mode ( 1) is the (1,1) mode, the second ( 2) is the (2,1) mode, the third 
( 3) is the (1,2) mode and the fourth ( 4) is the (2,2) mode.  Because of the curvature on the surface, the nodal line 
becomes rather distorted, like U-shape in the third mode, in the y direction but still symmetric about the y axis. In the 
following study, the coefficients not used in the present NUC model are slightly shifted ( 0.05 ) to observe effects 
caused by varying the coefficients.   

In (b) c11=0.05, since c11 is a coefficient of the xy term that gives the constant twist, the mode shapes are skewed 
slightly.  In (c), the c02 is a coefficient of the y2 term that gives the linear curvature only in 1/Ry, and all the mode 
shapes are symmetric about the y axis.  The present method is thus capable of analyzing the vibration of shallow 
shells with linearly changing curvatures for 1/Rx, 1/Ry and 1/Rxy and also with arbitrary boundary conditions.  These 
advantages offer the analytical tool for parametric study, which is indispensable in optimization of shell geometry.   
References   
[1] Fan, S.C. and Luah, M.H., J. Sound Vibr., (1995), vol.179, pp.763-776.   
[2] Hu, X.X. and Tsuji, T., J. Sound Vibr., (1999), vol.219, pp.63-88. 

(a) NUC               1=36.98 2=66.76 3=85.61    4=90.98     

(b) c11=0.05             1=37.94       2=67.84           3=84.96          4=92.31 

                  

(c) c02=0.05             1=27.86 2=65.95          3=81.33 4=85.44 

Fig.3 Mode shapes and frequency parameters for simply supported shallow shells with various curvatures. 
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Resonant Vibration of Planetary Gears Having an Elastic Continuum Ring Gear Excited by

Mesh Stiffness Fluctuations

Xionghua Wu and Robert G. Parker

Department of Mechanical Engineering

Ohio State University

In order to maximize the power density and improve load sharing among the planets, planetary

gears used in numerous industries are designed to have thin rims, and this leads to elastic deflection

of the gear bodies, especially the ring gear [1-3].

The parametric instability of planetary gears having elastic continuum ring gears is analytically

investigated based on a hybrid continuous-discrete model. Mesh stiffness variations of the sun-

planet and ring-planet meshes caused by the changing number of teeth in contact are the source of

parametric instability. The natural frequencies of the time invariant system are either distinct or

degenerate with multiplicity two, which indicates three types of combination instabilities: distinct-

distinct, distinct-degenerate and degenerate-degenerate instabilities. By using the structured modal

properties of planetary gears, the instability boundaries are obtained as simple expressions in terms

of mesh parameters through the method of multiple scales. Instability existence rules for in-phase

and sequentially phased planet tooth meshes are also discovered. For in-phase planet meshes,

instability existence depends only on the type of gear mesh deformation. For sequentially phased

planet meshes, the number of teeth on the sun (or the ring) and the type of gear mesh deformation

govern the instability existence. The instability boundaries are validated numerically.

This work derives the parametric instability boundaries as simple expressions in the system

parameters. We show that some mode types cannot combine to create combination instabilities,

and general instability existence rules are obtained for equally spaced planets. By adjusting the

tooth numbers, contact ratios, and mesh phase one can neutralize (or suppress) certain types of

instabilities, such as all the primary instabilities of any two rotational modes.

1 MATHEMATICAL FORMULATION

Figure 1 shows the elastic-discrete model of a planetary gear. The ring gear is modeled as a thin

elastic body. The sun, carrier and planets are treated as rigid bodies with two translational and one

rotational DOF. N is the number of planets. The motion of the ring is separated into two parts: the

rigid body motion ( , ,
r r r
x y u ) and the elastic tangential deformation ( , )v t! , which is related to the

elastic radial deflection by ( , ) ( , ) /w t v t! ! != "# # . The displacement of the system a is the

combination of the elastic deformation of the ring ( , )v t! and the discrete body deflections q as

[ , ]
T T

v=a q (1)

The bearings and supports of the sun, carrier, ring, and planets are modeled as two perpendicular

springs with equal stiffness. The sun-planet and ring-planet tooth meshes are modeled as springs

with time-varying stiffnesses that fluctuate as the number of teeth in contact at the mesh changes.

The amplitude of the stiffness fluctuation relative to the mean stiffness is ! .
s
c and

r
c are contact

ratios of the sun-planet and ring-planet meshes, and ! is the mesh frequency.

The dimensionless equation of motion for the time-varying system is

( ) 0M K t+ =a a!! (2)

where M and ( )K t are extended inertia and stiffness operators that combine the ring PDE with the

ODEs for the discrete elements. M and ( )K t are self-adjoint with the inner product

2
1 2 1 2 1 2

0
, ( )Tv v d

!

"< >= +#a a q q , where the overbar denotes complex conjugation.

The method of multiple scales is used with the introduction of the slow time t! "= , yielding
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The general solution for the time-invariant system (4) is 0

1

( ) ( ) . .s
i t

s

s

c e c c
!

" #
$

=

= +% s
a Y , where

( )!
s
Y are the eigenfunctions in extended variable form [3] and . .c c refers to the complex conjugate

of preceding terms. The multiplicity of the natural frequencies are summarized as: (i) Rotational

and purely ring modes have distinct natural frequencies; (ii) Translational modes are degenerate

with multiplicity two; and (iii) Planet modes exist when the number of planets 3N > ; if the

number of planets is odd, all the planet modes are degenerate with multiplicity two, otherwise, the

planet modes may be either degenerate with multiplicity two or distinct. Therefore, all natural

frequencies of planetary gears with an elastic ring gear are either distinct or degenerate with

multiplicity two.

When a harmonic of the mesh frequency is close to the sum of two natural frequencies secular

terms exist in (5), which leads to sum type parametric instability. This condition is

p q
L ! ! "#$ = + + (6)

When the harmonic of mesh frequency is close to the difference of two natural frequencies, such as

p q
L ! ! "#$ = % + , one can show that difference type parametric instabilities are not possible.

The instability boundaries are derived for the cases where !
p and !

q are distinct, one distinct and

one degenerate, and both degenerate. These expressions simplify considerably based on the modal

properties of planetary gears.

Equal planet spacing requires ( ) /
s r
z z N+ to be an integer, where

s
z and

r
z are the tooth

numbers of the sun and ring. Equal planet spacing has only two possible phase conditions: in-phase

and sequentially phased. When
s
z and

r
z are not each integer multiples of N, the sun-planet

meshes are sequentially phased, as are the ring-planet meshes; otherwise, all the sun-planet meshes

are in-phase and all the ring-planet meshes are in-phase.

Further analysis taking advantage of the special modal properties of planetary gears with an

elastic continuum ring gear leads to compact expressions for the parametric instability boundaries.

In particular, many instabilities can be completely suppressed by appropriate parameter selection.

Selected results are summarized as follows:

• The combination and single mode instabilities associated with a purely ring mode always

vanish for either in-phase or sequentially phased meshes.

• For in-phase planet meshes, one can state a key rule governing the existence or elimination of

parametric instabilities: If two modes have the same type of gear mesh deformation (as

captured by the mode type index T
p ) their combination instability exists, otherwise their

combination instability vanishes. Consequently, all distinct-degenerate instabilities vanish for

in-phase planet meshes.

• For the two cases of distinct-distinct combination instability that do not vanish for in-phase

meshes, the instability boundaries are
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where the ! quantities are modal mesh deflections. When both
s

Lc and
r

Lc are integers, all

potential instabilities driven by the
th
L harmonic of mesh frequency vanish. When neither of

s
Lc ,

r
Lc are integers, a minimum instability region can be achieved by adjusting

s
c ,

r
c and

sr
! in the third term of (7) such that this term is negative with large absolute value comparable

to the sum of the first two terms. The width of the instabilities region of two distinct modes is

proportional to the number of planets N and inversely proportional to L.

• Similar closed-form expressions can be derived for other modes and sequential mesh phasing.

• The foregoing closed-form expressions for the instability boundaries are compared to the

numerical solution from Floquet theory. Figure 2 shows the instability boundaries for a

planetary gear with four in-phase planet meshes. Some instability regions appear to be

predicted by only the numerical solution; this is because the figure shows only the primary and

secondary instabilities from the analytical solution, and the unmatched instability regions are

tertiary or higher order instabilities. Single mode instabilities such as
5 7 5 7
, , 2 , 2! ! ! ! always

exist. As predicted by analysis, combination instabilities exist only for modes with the same

type of gear mesh deformation such as
1 5

! !+ (two translational modes),
3 7

! !+ (two

rotational modes) or 4 9( ) / 2! !+ (two planet modes).

• The instability existence rule for sequentially phased meshes is: If

[ ( )]/
s p q

Lz T T N± ± ! integer, the instability vanishes; otherwise, the instability exists.
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Abstract
In the present paper linear and nonlinear vibrations of circular cylindrical shells having different boundary 
conditions are analyzed by means of the Sanders-Koiter theory. Displacement fields are expanded in a mixed 
double series based on harmonic functions and Chebyshev polynomials. Simply supported boundary 
conditions are analyzed, as well as connection with rigid bodies; in the latter case experiments are carried 
out. Comparisons with experiments and finite element analyses show that the technique is computationally 
efficient and accurate in modelling linear vibrations of shells with different boundary conditions. An 
application to large amplitude of vibration shows that the technique is effective also in the case of nonlinear 
vibration: comparisons with the literature confirm the accuracy of the approach. 

INTRODUCTION
The continuous growing of the commercial use of Space facilities leads to the development of new and more 
efficient aerospace vehicles; therefore, new and accurate studies on light-weight, thin-walled structures are 
needed.
The literature on the vibration of shells is extremely wide, the reader can refer to Leissa [1] or Amabili and 
Païdoussis [2]. Refs. [3-6] are strictly related to the present theory: shell like structures are analyzed by 
means of different kinds of expansions based on orthogonal polynomials.  
 In the present paper, linear and nonlinear vibrations of circular cylindrical shells are analyzed. Sanders-
Koiter theory is considered for shell modelling; displacement fields are expanded by means of a double 
mixed series: harmonic functions for the circumferential variable; Chebyshev polynomials for the 
longitudinal variable. Then Lagrange equations are considered to obtain an ordinary differential equation 
system, from potential and kinetic energies and the virtual work of external forces. A shell, clamped at the 
base and connected to a rigid body, is analyzed experimentally, analytically (present theory) and using 
standard finite elements models. Nonlinear vibrations, due to large amplitude of vibration, are analyzed in 
the case of simply supported shells; the present theory is compared with the literature. 

MODELLING 
The Sanders-Koiter theory is used in the present work, see Refs. [1,2,7,8]; an energy approach based on 
Lagrange equations is considered for deriving the equations of motion both in linear and nonlinear 
vibrations, details are not reported for the sake of brevity. 

Linear vibration: modal analysis. 
The modal shape is expanded in a double series, in terms of Chebyshev polynomials *

mT , and harmonic 
functions:

*
,

0 0
( , ) ( ) cos

UM N

m n m
m n

U U T n *
,

0 0
( , ) ( )sin

VM N

m n m
m n

T, V V n *
,

0 0

( , ) ( ) cos
WM N

m n m
m n

T n, W W     (1) 

where  and T* 2 1m mT T m( ) is the m-th order Chebyshev polynomial [9]. 
Expansion (1) does not satisfy any particular boundary condition; geometric boundary conditions are 
satisfied by suitably choosing some of the coefficients , ,  of the equation (1). ,m nU ,m nV ,m nW

Nonlinear analysis 
In the nonlinear analysis, displacements fields u(x, , t), v(x, , t) and w(x, , t) are expanded by using linear 
mode shapes obtained in the previous section: 
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Expansion (2) satisfies the boundary conditions and modal shapes U(j)(x, ), V(j)(x, ), W(j)(x, ), are known 
functions expressed in terms of polynomials and harmonic functions.  

NUMERICAL RESULTS 

Linear analysis 
Numerical analyses are carried out on a circular cylindrical 
shell made of P.E.T. material (Polyethylene terephthalate), 
clamped at the base and rigidly connected to a disk on the 
top, see Figure 1. The shell characteristics are: length 
L=0.096m, radius R=0.044m, thickness h=0.3 10-3m,  
mass density   =1366 kg/m3; Poisson ratio  =0.4.; Young 
modulus E = 4.6 109 N/m2. The disk: mass m=0.82 kg, 
moment of inertia along axes orthogonal to the cylinder 
axis Jy=Jz=7.55 10-4 kg/m2, position of the disk center of 
mass with respect to the shell top hG=0.01684 m. 
Experiments are carried out using seismic excitation from 
the base, excitation on the shell or excitation from the disk. 
In Figure 2 the fifth mode (seven nodal diameters) is 
shown as an example: experiments give 816Hz, the present 

theory predicts 802Hz and a finite 
element analysis gives 802Hz; the error 
is about 1.7%. For the first seven modes 
(95-1070Hz) the error is below 5%. 
Similar results are obtained for simply 
supported and clamped-clamped shells. 

Base excitation for the  
second and third modes 

Figure 1. Experimental setup. 

Nonlinear analysis 
Experiments carried out with the 

setup of Figure 1 shows that important 
nonlinear phenomena appears when the 
shell is excited seismically and the first breathing mode is in resonance. Such phenomenon is currently under 
investigation both theoretically and experimentally. In order to carry out a theoretical analysis an approach 
able to handle both complex boundary conditions and large 
amplitude of vibrations is needed. 

Figure 2. Mode shape comparisons:
THEORY EXPERIMENTS FINITE ELEMENTS 

As intermediate step of the present research, a simply 
supported steel made shell is considered, the geometrical and 
physical parameters are: L =0.2 m; R = 0.1m; h = 0.247 10-

3m;  = 2796kg/m3; = 0.31; E=71.02 109N/m2.
Large amplitude of oscillations are analyzed for Case A 
shell; such geometry was deeply investigated in the past, see 
Refs. [10-12]. The shell is excited by means of a pressure 
acting on the surface with modal distribution 

1,6 sin( ) cos(6 )cos( )rq f t  the amplitude is 
2 2

1,6 1,60.0012f h  and frequency close to the (k=1,n=6)
mode frequency: 1,6=2 553.3 rad/s; the modal 
damping ratio considered in the calculations is 0.0005. 
The response is slightly softening as confirmed by 

Figure 3. Nonlinear response. ‘ ’present theory; ‘– –‘ 
Ref. [10]; ‘—  —‘ Ref. [11]; ‘—‘ Ref. [12]; ‘ ’ Ref. [13]. 
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comparisons with Refs. [10-13]: the present model shows nonlinearity very close to Ref. [10], Refs.[11-13] 
predict larger nonlinear softening behaviour. It is to note that in Refs. [12,13] Donnell’s nonlinear shallow 
shell theory is considered: this theory is less accurate than Sanders-Koiter theory, the static condensation of 
in-plane displacements and simplified kinematics reduce the accuracy; generally the Donnell’s nonlinear 
shallow shell theory magnifies the softening behaviour. 
It is worthwhile to stress that, in the past, several theoretical and numerical studies failed in predicting the 
softening response, as correct nonlinear behaviour. It is to be noted that often, spurious hardening behaviours 
were found. Recently, it was clarified that circular cylindrical shells generally show a softening behaviour 
[13]: only very short or very thick shells can have hardening behaviour. Therefore, the analysis presented in 
Figure 3 is an important benchmark for evaluating the accuracy of the method.

CONCLUSIONS 
In this work both theoretical and experimental analyses have been carried out on shells vibration. The 
approach developed for solving the initial PDE is a general framework that allows to respect boundary 
conditions in a systematic way and to analyze large amplitude nonlinear vibrations with good accuracy. The 
final goal of the research is to understand complex nonlinear phenomena that appear when circular 
cylindrical shells are seismically excited. 
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A water sheet flowing over a weir sometimes oscillates as shown in Fig. 1.  Such water sheet 
oscillation, sometimes called nappe oscillation, causes windowpanes in the neighborhood to vibrate and even 
the weir itself in some cases.  Since nappe oscillation is generally considered to be due to the pressure 
variation behind a water sheet, spoilers are set to suppress oscillation in the crosswise direction to divide a 
sheet of water into several parts.  The mechanism of nappe oscillation, however, is not fully understood.  
Oscillation still occurs.  We study the relation between oscillation of a falling water sheet and pressure 
variation behind the water sheet experimentally and theoretically.  Consequently, falling motion of a 
disturbed water sheet and pressure variation behind the sheet form a positive feedback loop, which is a cause 
of water sheet oscillation. 

Fig.1 Oscillation of a sheet of falling water 

Figure 2 shows an experimental apparatus.  Water in an upper reservoir falls down to a lower 
reservoir through a slit or an outlet of the upper reservoir, 300 mm in length and aN =1.3 mm or 3.1 mm in 
width.  To form a water sheet expanding full width we set two acrylic plates at both ends.  Behind the 
water sheet, we set a rear board as shown in Fig. 2.  The distance b from the undisturbed water sheet to the 
rear board is changed to 300, 200, or 95 mm.  Water depth d of the upper reservoir is set 150, 200, or 250 
mm, which is kept constant during the experiment.  The falling distance h is varied from 470 to 620 mm.  
As the falling distance h is increased, the velocity of the lower part of the sheet increases due to gravity and 
water sheet oscillation occurs, which is stopped by rupturing the water sheet.  The air chamber is not 
enclosed completely but there are some narrow gaps. 

Behavior of a falling water sheet is monitored by a movie camera.  Pressure variation in the air 
chamber is also measured.  Figure 3 shows the behavior of an oscillating water sheet for one cycle with 
corresponding pressure variation.  In each figure, an air chamber is located on the right side of the sheet.  
A triangular mark denotes the location of an anti node of the sheet.  From the photographs, we note that the 
undulating water sheet travels downward and is accelerated by gravity with time.  By dropping ink into 
water in the upper reservoir, water falling speed was measured, which was almost the same as the falling 
speed of an anti node, that is, phase velocity.  Pressure in the air chamber varies periodically with the same 
frequency f, as that of water sheet oscillation.  Pressure reaches a maximum when the bottom part of the 
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sheet approaches a leftmost position as shown in Fig. 3(a) whereas minimum when a rightmost as shown in 
Fig.3(e).  Further, the pressure changes rapidly around these extrema.  A falling water sheet shows similar 
characteristics for other conditions. 

Fig.2 Experimental apparatus 
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Fig.3 Relation between pressures in the air chamber and water sheet configurations 

(aN =1.3 mm, b=300 mm, d=250 mm, h=621 mm, f=13 Hz) 

Since experimental observation shows that the pressure in an air chamber varies 
periodically with the same frequency as that of water sheet vibration, there should be an 
interaction between sheet vibration and pressure variation.  For simplicity, we assume that 
the motion of a water sheet is uniform in the crosswise direction, that is, in the z-direction as 
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shown in Fig. 2.  The air pressure p0 in front of a water sheet is kept constant while the 
pressure behind the sheet is p0+ p when it vibrates.  Since the size of the air chamber 
behind the sheet is much smaller than the wave length of sound, p is assumed constant 
throughout the chamber.  The velocity is assumed constant across the sheet, that is, in y
direction since it is very thin.  Then the equation of motion(see Figure 4) for the sheet is 
given as, 
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xa
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x
uu

t
u

w

w

g
      (1) 

where u and v are the flow velocities in x and y directions, respectively, and h(x, t) the water 

sheet displacement, w water density, and a(x, t) water sheet thickness.  Between  and v is 

v u
t x

                  (2) 

The boundary conditions at x=0 are 

, 0, 0Nu u v .            (3) 

Since the flow rate qN for a unit width is 

constant, we get 

const.NNN quaau         (4) Fig. 4 Analytical model 

We assume that the sheet velocities, displacement, water sheet thickness and pressure behind the sheet 
are expanded in a series in  in the following forms: 
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where subscript 0 denotes the equilibrium condition and subscript 1 denotes the perturbed condition.  
Substitution of equations (4) and (5) into (1) yields 

0,2 1
2

0 uuxu Ng       (6) 

Nwq
pxu

x
xu

xt
xu

t
10

2
1

2
2

0
1

2

02
1

2 )(
)()(2       (7) 

Solving this equation and calculating the work done by water sheet, we obtain the following conclusions. 
We observed that the frequency of air pressure variation in a chamber behind a water sheet is the 

same as that of the sheet oscillation.  Considering this observed result, we analyze the characteristic of a 
falling water sheet that performs small oscillation.  Consequently, water sheet oscillation occurs when Wtotal

is positive.  Wtotal is the difference between the work done by a water sheet on the air in a chamber behind 
the sheet and the work done by air pressure in the chamber on the sheet.  Water sheet oscillation is induced 
by the potential energy due to gravity.  When S(=water sheet frequency times falling time) is close to an 
integer plus 0.23-0.24, sheet oscillation occurs.  Placing a baffle at a quarter of wavelength above the water 
surface of the lower reservoir prevents water sheet oscillation.  There are multiple modes of water sheet 
oscillation for a particular condition.  Some appear more frequently while others less frequently.  The 
mechanism of selecting a particular mode is not well understood and is a problem to be solved. 
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Free vibration and transient response analyses of open circular cylindrical shells 
subjected to various boundary conditions have been investigated recently by the authors of this 
paper [1, 2].  They have used the polynomial-type method for the free vibration solution and 
state-space method in conjunction with Runge-Kutta integration algorithm for the forced 
vibration.  Specifically, they have successfully applied the method to skewed (supported on non-
rectangular boundary) open cylindrical shells [1]. The work is further continued towards the 
same for the open shells of revolution such as conical and spherical shells.

Equations are developed using the first order shear deformable shell theory, wherein the 
displacement components in the meridional ( ) and circumferential ( ) directions vary linearly 
along the thickness.

),(),(),,( 1zuzu
),(),(),,( 2zvzv       (1) 

),(),,( wzw

where, u , v , and w  denote the components of displacements along , , and z for any point 
within the shell and z is the distance measured from the middle surface of the shell.  Similarly, u,
v, and w denote the middle surface displacements and the symbols 1 and 2  correspond to the 
components of the rotation of the normal to the middle surface of the shell in  and  directions 
respectively.  Also, one should note that the transverse displacement component does not vary 
along the thickness.  A shear correction factor of (5/6) is used so that the formulation is 
consistent with the parabolic distribution of the transverse shear stresses.   

The energy functional which is the basis of the formulation and derivation of the equation 
of motion is deduced from the following strain-displacement relations in curvilinear coordinates 
from the general theory of elasticity [3].  
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 Equation (1) is first substituted in the strain-displacement equation (2) and then into the 
strain and kinetic energy expressions to obtain the stiffness and mass matrices of the shell 
structure. The derivation is further carried out using a modified version of the Rayleigh-Ritz 
method, where the geometry of the shell and the displacement fields are expressed in terms of 
polynomials. This is done by using two different sets of grid points on the middle surface of the 
shell, one for surface coordinates and the other for displacement components respectively.  The 
number of points in the first case depends upon the complexity of the edges forming the 
geometry and these points are termed here for convenience as the geometric nodes.  Similarly, 
the number of grid points for the displacement components governs the order of the polynomials 
and in turn determines the accuracy of the results, i.e. increased number of points renders 
converged results.  The above said polynomials are expressed in natural coordinates,  and , in 
the following manner along the middle surface of the shell.  
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where Nj( , ) is known as the “geometric shape function” corresponding to the j-th geometric 
node, and q is the number of geometric nodes chosen to accurately represent the shell model.  
The next step in the process is to define the displacement fields, also in terms of  and 
coordinates, for each of u, v, w, 1 and 2 . To achieve this, a set of grid points, other than the 
one used in equation (3) for geometric nodes, is considered.  It can be easily found that the 
expression for the displacement field has the same form as that used for the geometric shape 
function.  The difference here is that displacement shape functions are created using a relatively 
high order interpolating function. Only the displacement component u is given in the following 
for simplicity and the other four are defined by replacing u by the respective displacement 
components. 
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In the above, p = (p1+1)×(p2+1), p1 = order of the polynomial in , similarly p2 = order of the 
polynomial in  and Nj( , ) corresponds to the u-displacement uj of the j-th displacement node.
With the help of equations (1 – 4), the energy functional comprising strain energy, kinetic 
energy, and the work done by the applied load in the case of forced vibration is established and 
the matrix equation of motion is obtained by the Hamilton Method in which the variation is taken  
on the displacements ),,,,( 21jjj wvu .  Terms associated with 1and 2 are retained in the 
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kinetic energy expression and hence the effect of the rotary inertia is included in the formulation 
along with the transverse shear deformation. 

Presently, the work is in progress and computer program is being developed in C++ with 
the objective that one program produces results for the cylindrical, conical and spherical shell 
panels.  This is achieved by selecting appropriate coordinate system and the radii of curvatures 
for a particular type of shell of revolution.  Natural frequencies and mode shapes will be 
calculated for above said three types of open shells and validated by comparing with results 
available in the literature.  A convergence study with regards to the order of the polynomials 
used for the displacement fields will be performed to gain the confidence in the results.  The 
program will also be expanded to the transient vibration analysis of the shell panels and both 
linear and geometrically nonlinear cases will be considered.   For transient vibration analysis the 
well known Newmark’s integration method will be used.  
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Introduction

From the 1950s to the 1970s, stability problems of structural members subjected to follower forces
attracted very much attention. Meanwhile it seems to be clear (see [4], for instance) that many of
such problems are academic and structural members subjected to fluid flow loading belong to the few
representatives of non-conservative mechanical systems of practical relevance.

A special type of this problem class is a cantilevered bar subjected to a transverse follower force
of fluid jet, which during the early 1970s (see [5,8], for example) was studied in many details. The
investigations were based on linear models taking into consideration some pre-deformation due to
the time-independent loading or on a simplified geometrically non-linear theory. In addition, the
treatment was focused on a special arrangement producing the follower force of fluid jet. Since i)
a consistent geometrically nonlinear theory of elasticity for such problems is available now (see [6,9]
where the academic problem of a cantilever subjected to follower tip moment was treated) and ii)
other specifications of tip jets are interesting to be discussed, the described problem is re-considered
here.

In a first step, a sufficiently consistent formulation of the governing boundary value problem
is presented, where two different mechanisms of fluid jet loads are discussed. The corresponding
variational equations are derived next where a non-dimensional notation is introduced. This non-
dimensional formulation is the key to recognizing the important parameters influencing the stability
behavior and the flutter load, in particular qualitatively but also quantitatively.

Physical Model

Consider a slender beam of length L and mass per unit length µS = ρA (ρ mass density, A cross-
sectional area) with narrow rectangular cross-section (thickness h height H) so that the smaller of
the bending stiffnesses EI2 and the torsional stiffness GIT are much smaller than the other bending
stiffness EI1, see Fig 1a. All data are assumed to be constant. One end of the beam is rigidly fixed
and there is introduced a Cartesian reference frame {OeXeY eZ} with origin O coinciding with the
centroid S(Z = 0) of the cross-sectional area, where the unit base vectors eX ,eY correspond with
the symmetry axes of that cross-section and eZ is directed along the non-deformed bar axis. Due to
the deformations (displacements u, v, w and a torsional angle ϕ), the centroid S(Z) of a general cross-
section located at the position ZeZ displaces to s with a corresponding changed orientation denoted
by the body-fixed reference frame {oexeyez} with origin o coinciding with location s of the deformed
cross-sectional centroid, where ez, ey correspond with the symmetry axes of the actual cross-section
(which itself remains undeformed) and ez is the outside normal of that cross-section.

Two layouts of follower fluid jet load are considered, see Fig. 1b and c. The first one is that intro-

a) b) c)

Figure 1. Bar Model, Coordinate Systems and Layouts of Fluid Jet Load.

duced by [5] and [8]. In this case, the bar has a uniform circular bore of certain suitable diameter along
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the Z-axis (in un-deformed state), through which an incompressible fluid (e. g., water) at constant
speed U0 is flowing. A nozzle is connected at the free end of the beam with the hole such that the
fluid leaves the system in the deformed state at the centroid s(Z = L) in the form of a jet following
the end cross-section in its actual state shooting into the ey(Z = L)-direction.

The second specification is geared to that one suggested by Como [2] and Wohlhart [10] here also
at the tip end. To make their academic follower force practicable, a slender rigid attachment of mass
M and length H with a central hole as a model of a jet engine is appropriately fixed at the end
cross-section along ey(Z = L) where air is coming in with speed U0 at Y = −H/2 and exhaust gas is
leaving with larger speed U1 > U0 (neglecting the fuel mass rate against the air flow rate) at Y = H/2
so that a transverse follower propulsion in the −ey-direction results.

Formulation

The governing boundary value problems are derived based on the assumptions as follows: The fluid
is inviscid. Rotary inertia and shear deformation of the beam are neglected as well as gravity effects.
Then, Hamilton’s principle

δ

 t1

t0

(T − V ) dt+
 t1

t0

Wvirt dt = 0

will be applied where T is the kinetic energy of the open system to be considered, V is the corre-
sponding potential energy and Wvirt contains the virtual work of all non-conservative forces and the
contributions of mass transport over the open boundaries.

Independently from the two follower force realizations, there are the energy contributions

TS =
1
2

 L

0

µS(u2
,t + v2

,t + k2
Sϕ

2
,t) dZ, k2
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I1 + I2

A

and

VS =
1
2

 L

0


EI2u

2
,ZZ + EI1(−v,ZZ + ϕu,ZZ)2 +GITϕ2

,Z


dZ

of the structural member together with its virtual work term

Wvirt,S = −de

 L

0

µS(u,tδu+ v,tδv + k2
Sϕ,tδϕ) dZ

− di

 L

0

(EI2u,ZZtδu,ZZ + EI1v,ZZtδv,ZZ +GITϕ,Ztδϕ,Z) dZ (1)

characterizing external and internal damping in a linear formulation which is sufficient.
Two alternative fluid flow contributions to kinetic energy and virtual work representing the distinct

follower force concepts have to be added. In case 1 where fluid flows through the central hole of the
bar and leaves at the nozzle following the end cross-section into ey(L)-direction (here in such a form
that the fluid speed within the nozzle remains unchanged), there is an additional kinetic energy

T
(1)
F =

1
2

 L

0

µF


u2

,t + v2
,t + 2U0(u,tu,Z + v,tv,Z)
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dZ

and a work term
W

(1)
virt,F = −µFU0


(u,t − U0ϕ)δu+ (v,t + U0)δv


Z=L

.

If the shortening of the bar were to be taken into consideration, a supplement would occur that would
not significantly modify the stability analysis.

In case 2 (assuming that the fluid mass within the attached engine is negligible compared to M)
the kinetic energy of the jet engine

T (2) =
1
2
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M(u2

,t + v2
,t) +

MH2

12
ϕ2

,t


Z=L

and the contribution of the fluid jet

W
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
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
− U1
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
Z=L
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have to be added. Also in this case, the shortening of the bar end (together with the inclination angle
v,Z(Z = L)) can easily be taken into account.
It is straightforward now to evaluate Hamilton’s principle for both cases to get the respective

governing boundary value problems.
It will be mentioned that, for a consistent post buckling analysis or the examination of interacting

oscillations in both lateral directions of the beam, a geometrically nonlinear theory of elasticity to
the cubic order (see [1], for instance) or a nonlinear elastica theory (see [3,7], for instance) should be
applied.

Evaluation and Results

In a first step, the steady deformation state is determined which is for both follower force realizations
a pure time-independent bending about the stiffer of the two main inertia lateral axes without torsion:

u0(Z, t), ϕ0(Z, t) ≡ 0, v0(Z, t) = v0(Z) where
EI1v0,ZZ = −µFU

2
0 (L− Z) (case 1) or EI1v0,ZZ = −µF(U2

1 − U2
0 )(L− Z) (case 2).

Taking now solutions of the form

u(Z, t) = u0 +∆u(Z, t), v(Z, t) = v0 +∆v(Z, t), ϕ(Z, t) = ϕ0 +∆ϕ(Z, t)

and substituting them into the governing nonlinear boundary value problems, we get – linearizing
in the ∆-quantities – the variational equations as the starting point for the stability analysis. As
expected the coupled boundary value problem in ∆u and ∆ϕ constitute the lateral buckling problem
while the other decoupled one in ∆v describes simple damped oscillations.
Introducing non-dimensional variables and parameters, it becomes obvious that besides two char-

acteristic damping coefficients De and Di the stiffness ratio GIT /(EI2) together with the slenderness
(kS/L)2 may drastically influence the eigenvalues as a function of the load parameter µFU

2
0L

2/
√
GITEI2

(case 1) or µF(U2
1 −U2

0 )L
2/
√
GITEI2 (case 2). The stability behavior will be discussed in detail where,

in particular, some qualitative results not given in [5,8] will be presented.
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After earning two degrees (Aeronautics, 1986 and Aerospace Engi-
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The above served an engineering apprenticeship with Ford Motor Company, Dagenham, UK, before 
attending the University of Nottingham, where he obtained both his B.Sc. and Ph.D. in Mechanical 
Engineering.  He then spent three years as a lecturer at the University of Liverpool before immigrating 
to Canada in 1969 to take up a faculty position at The University of Western Ontario, becoming Profes-
sor Emeritus upon his early retirement in 1997.  Whilst at Western, he had the opportunity of spending 
sabbatical leaves at the Institute of Sound and Vibration Research, Southampton, UK, the University 
of Canterbury, Christchurch, New Zealand, and Monash University, Melbourne, Australia.

His research and teaching interests have mainly been in the vibration of beams, plates and shells, with 
brief excursions into acoustics.   Most of his research was of a theoretical or numerical nature, primar-
ily employing “classical” approaches, although some experimental work was conducted and, in the 
early years, some work was done on the development of finite element methods.

His recreational interests, shared with his wife Rosemary, include curling (a little like lawn bowling on 
ice), badminton and dinghy sailing.  He has also been learning to play the euphonium (half size tuba), 
and participates in a band program run at the university.
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 I grew up interested in science and mathematics, largely due to my fascination 
with the U.S. spacecraft I used to watch launch from Cape Canaveral—when I lived in 
nearby Orlando, Florida.  I received my BS in Engineering Mechanics from the U.S. 
Air Force Academy, then began a 20-year career in the Air Force.  I served for four 
years in turbine engine stress and durability analysis where I was an “early” user of 
finite element analysis for hot, rotating turbomachinery.  I then served a two-year 
assignment in turbine engine maintenance and support, which was less technical, 
but eye-opening.  During these early years—in my spare time—I earned an MS in 
Mechanical Engineering from Ohio State University.

With an MS in hand, I returned to the Air Force Academy to serve on the 
faculty as an Assistant Professor.  After two years, I returned to Ohio State to 
complete a PhD.  As a student of Art Leissa’s, I focused on the combined bending, 
torsion and axial vibrations of “stubby” beams, thereby establishing my interest in 
the vibrations of continuous systems.

After returning to and teaching at the Academy for six years, I was assigned to 
the Air Force Flight Dynamics Lab, where I worked on two interesting projects.  The 
first was the development of a structural design algorithm capable of, among other 
things, “maximizing” the separation of two natural frequencies.  The utility of this 
endeavor was to allow the design of aircraft wings for which the bending and 
torsional natural frequencies are sufficiently separated (in frequency) to avoid flutter.  
The other interesting project was the analysis of the effect of convected 
aerodynamic loads on a missile.

I am now on the Aerospace Engineering faculty at the University of Kansas.  
My current research interests are in structural acoustics, which is a topic of 
increasing  interest to aircraft manufacturers.   In recent years, I have focused on the 
ability to analyze—and design—structural damping for built-up fuselage structures.  
All the test articles I’ve used to validate my work through experimentation are simple 
structural elements, namely beams and plates. 

I have a great love of the outdoors, and of the mountains in particular.  When 
Art Leissa asked me to help organize the first International Symposium on Vibrations 
of Continuous Systems, and he toId me he wanted to meet in the mountains, I was 
really excited.   I look forward to attending the Symposium this year after missing the 
last two. 
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Took my graduate studies at the Department of Mechanical and Aertospace Engineering, 
Syracuse University. Subsequently returned to Atomic Energy of Canada Limited. 
Worked on R and D projects for five years. Principal work related to studies of flow 
induced vibration of nuclear reactor fuel and nuclear steam generator U-Tubes. 
Continued with same research after joining the University of Ottawa. Subsequently 
broadened field to vibration studies of beams and plates. Currently conduct plate 
vibration research as Professor Emeritus with a special interest in rectangular plate in-
plane vibration. Also conduct development work on a remote operated window cleaner 
for high-rise buildings. 
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I received most of my education in Sao Paulo, Brazil, where I obtained a degree in 
mechanical engineering and later a doctor's degree (in 1966) at the Escola Politecnica 
da Universidade de Sao Paulo. Later I did my 'Habilitation' (similar to a D.Sc. degree) at 
Karlsruhe in Germany. My main professional interests are vibrations and stability of 
discrete and continuous systems (such as beams, plates and cables), and vibration 
control. While my early work was more analytical (e.g. the converse of the Lagrange-
Dirichlet theorem, differential games, etc.), during the last 20 years I have worked more 
and more also with problems related to industrial applications, including experimental 
work, the emphasis however usually being on producing practical mathematical models. 

Recently I have been working with piezoelectric ultrasonic travelling wave motors, wind 
excited vibrations of overhead transmission lines (including cfd calculations), and with 
the dynamics and active noise control in disk brakes. I am the author of several books 
on linear and nonlinear vibrations as well as a three volume German textbook on 
elementary statics, strength of materials and dynamics. Recently I also organized 
several workshops dealing with the question of how we should teach engineering 
mechanics to our students today. 

I have been a visiting professor and research fellow at Stanford, Berkeley, Paris, Irbid 
(Jordan), Rio de Janeiro and Christchurch (New Zealand). My personal hobbies are 
travelling, photography and hiking (mainly day hikes). 
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I was born on March 21st 1978 in Frankfurt am Main, Germany.  

In 1997 I finished high-school (Abitur) and did civilian service for 13 months. In October 1998 I 
started the studies of industrial engineering / mechanical engineering at Darmstadt University of 
Technology.

After finishing my preliminary diploma in 2001 I switched to the studies of applied mechanics 
with the main focus on dynamics. I continued my studies in the fall semester 2001 and the 
spring semester 2002 at the University of California at Berkeley. 

In Juli 2003 I started as a Ph.D. student at Darmstadt University of Technology in the group of 
Professor Hagedorn. In October 2006 I finished my dissertation with the title „Self-excited 
vibration in disk brakes: mathematical modeling and active suppression of disk brake squeal“. 

My hobbies are cycling (road and mountain bike), skat and cooking.  
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Chiung-Shiann Huang’s current position is a Professor in the Department of Civil 
Engineering, National Chiao Tung University, Taiwan. He received his Ph. D in 1991 
at the Department of Engineering Mechanics at the Ohio State University. After that, 
he spent nine months as a postdoctoral research associate in the Department of Civil 
Engineering at the Ohio State University. The doctoral and postdoctoral research dealt 
with the use of singular corner stress functions to permit accurate solutions for free 
vibration frequencies of thin plates having sharp corners. 

In 1992, he went back Taiwan and joined the research staff at the National Center 
for Research on Earthquake Engineering (NCREE). In addition to continue his serious 
interests on computational mechanics, he began to study the system identification of 
structures from monitoring earthquake responses of structures and the responses from 
various tests in field, such as ambient vibration test and forced vibration test.  

After having stayed in NCREE for nine years, he joined the faculty of the Civil 
Engineering Department at National Chiao Tung University in 2000. His current main 
interests are dynamic and stability analysis of curved beams, vibrations of thick plates 
with stress singularities, system identification using time series, neural network, and 
wavelet transform.  
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Jim was born in San Francisco Ca. He graduated from Stanford University with a BS in

Mechanical Engineering in 1954. Upon graduation he went to work for Westinghouse’s

Atomic Power Division in Pittsburgh Pa. While working at Westinghouse he earned his

masters in Mathematics in 1958. He then went to work for Lockheed Missiles and Space

Division in Palo Alto Ca. While working at Lockheed he went back to Stanford as a part

time student, earning his Ph.D. in Engineering Mechanics in 1963. He stayed on at

Lockheed for another year before taking an academic position at the University of

California, Davis.  He was at Davis until his retirement January 1 1993.

His interest in vibrations began while he was working at Lockheed. His primary

responsibility at Lockheed was in missile vibrations. When he arrived at Davis he was

asked to teach the graduate course in Mechanical Vibrations. Many of his students were

from Agricultural Engineering. They were interested in shaking fruit and nuts from trees.

Of course, the solution methods were the same whether the vibrating body was a missile

or a tree, and a number of cooperative projects took place on the study of tree vibrations.

His early interest in continuum vibration also had its roots in missile applications.

Jim loves to sing and was very active in the Davis Comic Opera Company that mainly

produced the works of Gilbert and Sullivan. Unfortunately, the Davis Comic Opera

Company ended its existence this year after 30 years of entertaining the people of Davis

and the surrounding communities. He is still singing with the University Chorus, and this

year had the privilege of singing the Mozart Requiem in December, Beethoven’s 9th

Symphony in March, and the opera Carmen in May. Jim is also a home-brewer and has

dabbled in photography, stained glass, auto mechanics, and lately web design.

He is presently chair of the Yolo County Juvenile Justice / Delinquency Prevention

Commission. He does volunteer work with Citizens Who Care (a local non-profit agency

dedicated to helping the elderly). He has become an avid golfer but still enjoys doing

some research on topics of his own choosing.

Jim and his wife Pat celebrated their 50th wedding anniversary last summer by taking

their family on a cruise to Alaska



66 International Symposium on the Vibrations of Continuous Systems, July, 2007

Sinniah Ilanko 
The University of Waikato 

Te Whare Wananga o Waikato 
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Ilanko was born in the north of Sri Lanka (Jaffna) in1957, and according to the common 
Tamil practice, he does not have/use a family name. Ilanko is his given name and Sinniah 
is his late father’s given name. 

He graduated from the University of Manchester (U.K) with a BSc in civil engineering 
and also obtained an MSc from the same university under the supervision of Dr S.C. 
Tillman. His move to England at an early age was the result of his late brother 
Senthinathan’s foresight on the Sri Lankan political situation. After working as an 
assistant lecturer at the University of Peradeniya in Sri Lanka for about two years, he 
commenced doctoral studies at the University of Western Ontario under the supervision 
of Professor S.M. Dickinson. Soon after completing his PhD, he worked as a postdoctoral 
fellow at the UWO for about six months until he joined the University of Canterbury in 
1986. He continued his academic career at Canterbury for nearly 20 years, in various 
positions, as lecturer, senior lecturer and associate professor until he joined the University 
of Waikato in 2006. He has also served as the Head of Mechanical Engineering 
Department at Canterbury for a year (2001-2202) and worked as a visiting professor at 
the Annamalai University (India) and Technical University of Hamburg-Harburg during 
his study leaves. In 1997, he was awarded the Erskine Fellowship and visited several 
universities in Australia, Canada, Singapore and the U.K. 

His research areas include vibration and stability of continuous systems, numerical 
modelling and adaptive mechanisms. He is also interested in computer-aided learning and 
has developed and used several interactive lectures and tutorials for teaching Mechanics 
of Materials and Vibration, as well as computer tutorials and games for learning/teaching 
Tamil language. He maintains a “vibration resources homepage” (see the second URL 
above), which at present contains some interactive simulation programs for calculating 
natural frequencies and modes of some structural elements.  

He is married to Krshnanandi and they have two daughters, Kavitha and Tehnuka. 
Ilanko’s birth family is scattered across the globe (Australia, Canada, New Zealand, the 
U.K. and the U.S.A.) because of the civil war in Sri Lanka. 
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Arthur W. Leissa 
Colorado State University 

 After earning two degrees in mechanical engineering, with a strong interest in machine 
design, I decided to seek better understanding of stress and deformation of bodies, so I got my 
Ph.D. in engineering mechanics (from Ohio State University in 1958). My dissertation research 
was in the theory of elasticity. I then stayed on as a faculty member. 

 Working part-time for two aircraft companies (Boeing and North American Aviation) 
made me very interested in vibrations. In 1965 I approached NASA to support me with research 
funds to collect the literature of the world in plate and shell vibrations, and summarize it in two 
monographs. They did, and the two books were published in 1969 and 1973. They were out of 
print for a long time. But in 1993 they were reprinted by The Acoustical Society of America and 
are currently available from them.  

 After gaining considerable knowledge in writing the two books, I continued to do 
extensive research on vibrations of continuous systems, including laminated composites 
turbomachinery blades, and three-dimensional problems. More than 100 published papers, and 
most of the 40 dissertations I supervised, have been in this field. But 14 years ago I agreed to 
become the Editor-in-Chief of Applied Mechanics Reviews, so I then had less time available for  
research.

 I have always intended to update the “Vibration of Plates” monograph. Indeed, more than 
20 years ago I had a graduate student collect the more recent literature. This consisted of 1500 
additional references dealing with free vibrations. But I never could find the time needed to 
undertake the writing.

 Many of my former Ph.D. advisees have wanted to collaborate with me on further 
research in vibrations, and several of them are doing so now, including ones abroad. This is an 
ideal situation for me---better than having graduate students! They know what they are doing, 
and why. 

 In June of 2001 I formally retired from Ohio State University after having been on its 
faculty for 45 years. In July, 2002 Trudi and I moved to Fort Collins, Colorado, approximately 
60 miles north of Denver, and close to the mountains.  I am now an Adjunct Professor in the 
Department of Mechanical Engineering of Colorado State University.   Having no serious 
responsibilities there, I continue my editorial functions with AMR, and still collaborate with 
others on research.. 

 My serious interest in the mountains began as a boy, reading books about Mallory and 
Irvine on Everest, and others. In 1961 when I could first afford it (with a family) I began 
climbing mountains, which I pursued strongly for decades. Now being 75, I can no longer climb 
them, but I still enjoy greatly being in the mountains---hiking, skiing and snowshoeing.. They 
restore one’s vitality and one’s peace. I am happy to be able to share this feeling, to some extent, 
with the Symposium participants. 
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I graduated with a B.Eng. degree in Mechanical Engineering (Aeronautics) from University of 
Technology, Malaysia in 1989.  I was conferred a M.Eng. degree in Mechanical Engineering from 
National University of Singapore in 1992 for the research in hydrodynamic stability of potential and 
boundary layer flows over periodically supported compliant surfaces.  The research was an attempt 
to model and understand the mechanism and responses of flows over the skin of a dolphin and the 
ability of a flexible skin to stabilize boundary layer flows.  Subsequently, I pursued research in 
vibration of isotropic and laminated plates and shells and was awarded a PhD degree in Mechanical 
Engineering from Nanyang Technological University, Singapore in 1995. 

I continued research as a postdoctoral fellow at Department of Civil Engineering, The University of 
Queensland, Australia from 1995 to 1997, and as a research fellow at Department of Mechanical 
Engineering, The University of Hong Kong from 1998 to early 2000.  I joined Department of 
Building and Construction, City University of Hong Kong as an assistant professor in 2000 and was 
promoted to associate professorship in 2003. 

My main research interests are in developing new models and applications of plate and shell 
structures including flow-structures interaction in advanced engineering fields such as smart 
piezoelectric structures, micro-electro-mechanical systems (MEMS) and nanomechanics.  Recently, 
I have much interest in a new subject symplectic elasticity which bridges physics (including 
quantum mechanics and electromagnetism), control and applied mechanics. 

I am married to Moi P. Choo, have a daughter Qin Y. Lim, twelve, and a son Ying H. Lim, now 
eight.
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Name:  Andrei V. Metrikine 
Title:  PhD, Dr.Sc. (physics and mathematics) 
Affiliation: Delft University of Technology,          

Faculty of Civil Engineering and Geosciences 
Address: Stevinweg 1, 2628 CN Delft, The Netherlands 
Phone: +31 15 2784749 
Fax:  +31 15 2785767 
E-mail:  A.Metrikine@tudelft.nl 
Web: http://www.mechanics.citg.tudelft.nl/

Short Biography. 

Andrei has graduated from the faculty of radio-physics of the State University of Nizhniy 
Novgorod, Russia in 1989. After graduation he became a junior researcher at the 
Mechanical Engineering Institute of RAS (Russian Academy of Sciences). In 1992 he 
received his PhD degree in the field of Theoretical Mechanics from the State Technical 
University of St. Petersburg, Russia. After that he was a researcher, senior researcher and 
leading researcher at the Mechanical Engineering Institute of RAS. In 1994-1996 Andrei 
was a post-doctoral researcher at Delft University of Technology and then, in 1996 - 
1997, a Humboldt’s Foundation fellow in the Institute for Mechanics of the Hannover 
University, Germany. In 1998 he has received his Dr.Sc. (Doctor of Sciences) degree in 
the field of Mechanics of Solids from the Institute for Problems in Mechanical 
Engineering RAS, St.Petersburg, Russia. 

Since 1999 Andrei is a member of staff of the Structural Mechanics Section of the 
Faculty of Civil Engineering and Geosciences of Delft University of technology, the 
Netherlands. Currently, he is an associate professor and the head of Wave Mechanics 
research group.

In 2006 Andrei has been appointed as an associate European editor of the Journal of 
Sound and Vibration. 
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Ken-ichi Nagai
Gunma University

 Ken is a professor of the Department of Mechanical System Engineering in Graduate School of 
Engineering, Gunma University.
 He was born in Fukushima north-east of Japan. He graduated from the national college of 
technology in Fukushima. During the student, he received deep impression from the book
"Mechanics" by Den Hartog. At the time, he wanted to devote himself to research and education. 
He received his B. Eng. in 1970 from Ibaraki University. He obtained M. Eng. and Dr. Eng. in 
1972 and 1976 from Tohoku University, respectively.

 Since 1976, he has been taking an academic position in Gunma University. From 1990 to 1991, he 
was a visiting fellow at Cornell University in U. S. A., Technische Hochshule Darmstadt in 
Germany and Polish Academy of Sciences in Poland.
 He is a Fellow of the Japan Society of Mechanical Engineers and is the chairman of the Division of 
Dynamics, Measurement and Control in JSME. He organized the Technical Section on Nonlinear
Vibration under the division. He has been a consultant to ministry, local government and automobile
industry.

 He is now devoted in the research filed of nonlinear vibration, dynamic stability and chaotic
oscillations of structure such as beam, arch, plate and shell.
 Recently, he published the book of "Dynamic system Analysis-Energy Approaches from Structural 
Vibration to Chaos-".

 His personal interests include hiking and drinking a little. He feels spiritual happiness as 
walking in fields and facing to new phenomena of chaotic vibration.
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   Hello, everyone!  I am Yoshi (Yoshihiro) Narita of Hokkaido University, Sapporo, Japan.  
I moved to HU three year and three months ago (An academic year starts in April, and Prime 
Minister Shinzo Abe tries to change so that half of the students start in September).  I had 
spent twenty-four years at Hokkaido Institute of Technology. 

I enjoy the blessed surroundings at HU because of less teaching duties and many more 
graduate students who are capable of doing excellent research works.  Our laboratory, with 
my two colleagues, has five PhD students and eleven Master course students in addition to 
seven senior undergraduate students.  We expect one Korean sabbatical visitor and foreign 
students soon.  I wish I had more time with them.  This summer, I will run a conference 
called APVC2007 (Asian Pacific Vibration Conference) on the HU campus, and after this 
ISVCS, I will fly back to give a finishing touch to the preparation of APVC. 

I started my research on vibration of continuous systems when I was a graduate student 
under adviser Prof.Irie of HU in 1976, and continued it when I had a chance to study one year 
in 1978-1979 under Prof.Leissa at the Ohio State University.  In these days when 
researchers change their topics more frequently, one may say, it is incredible that I have kept 
the same topic thirty years.  But somehow, I love the research in the area of continuous 
systems.  Recently, I combine the vibration and buckling of plates and shells with 
optimization. 

On a personal note, I have a wife and three children (a male HU student of 22 year old, a 
high-school girl of 17 old and a junior-high-school boy of 14 old).  They used to come with 
me in early ISVCS’s, but the children are now busy with their own schedules.  I am happy 
only with the fact that they are healthy and still stay with me and my wife in Sapporo.   

   I am also happy that I could join all the ISVCS’s, including ISVCS-I(Estes Park, USA), 
II(Grindelwald, Switzerland), III(Grand Teton, USA), IV(Keswick, UK) and 
V(Berchtesgarden, Germany).  These are full of good memories.  In the present ISVCS, I 
look forward to meeting old and new friends in the research community of applied 
mechanics. 

Let’s enjoy!           
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Robert G. Parker 

Department of Mechanical Engineering 
Ohio State University 

I have been a faculty member in the Ohio State Mechanical Engineering Department 
since 1995. My graduate study was all at the University of California, Berkeley. Between 
my M.S. and Ph.D. degrees, I worked in the Structural Dynamics Department at The 
Aerospace Corporation in Los Angeles and spent one year as a visiting researcher at 
the University of Sydney. I spent one summer conducting research at the University of 
Tokyo under the NSF Japan Program and another as a NASA Faculty Fellow at Glenn 
Research Center. In 2005, I spent my sabbatical as 7.5 months in the Wind Energy 
Department at Risoe National Lab in Denmark and six weeks at the University of 
Technology, Sydney. 

My research interests are the vibration and stability of high-speed mechanical systems. 
Current projects investigate the linear and nonlinear dynamics of multi-mesh gears and 
automotive belt drives. A particular focus is planetary gear dynamics with application to 
helicopter, automobile, wind turbine, and aircraft engine transmissions. Planetary gears 
are a fascinating research topic because of the complex tooth meshing at the multiple 
meshes, where the teeth act as discrete, time-varying, nonlinear stiffnesses. Elastic 
continuum vibrations of the ring gear couple the sun, planet, and carrier motions to form 
a hybrid discrete-continuum system. With ARO support, we built a major test stand (24 ft 
x 12 ft, 32,000 lb) to measure the dynamic motions of the planetary gear components at 
operating conditions. The belt drive problem examines the coupled vibration of the 
continuous, moving belt span with multiple discrete accessory pulleys. The concerns are 
noise, belt slip, fatigue, and, in some cases, belts jumping off pulleys.  

I received the Army Research Office Young Investigator Award. This award led to the 
Presidential Early Career Award for Scientists and Engineers, which was presented at 
the White House. Both of these are associated with the planetary gear research. In 
1999, I received the National Science Foundation CAREER Award for the high-speed 
belt drive and disk-spindle system projects. I am a Fellow of the American Association 
for the Advancement of Science and received ASME’s Gustus Larson Award for 
outstanding achievement within 20 years of the BS degree. I am currently an Associate 
Editor for the ASME Journal of Vibration and Acoustics. 

My wife, Bethann, and I have three kids (10, 8, and 5) who will join us in Squaw Valley. 
When time permits, we enjoy travel and most outdoor activities and look forward to the 
hikes and conference activities in Squaw Valley. We enjoy cooking, live theater, and 
recently are developing an interest in gardening. I am an avid tennis and squash player. 
Another hobby of mine is brewing beer.
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Biography
of Francesco Pellicano 

Francesco Pellicano was born in Rome, Italy on July 19, 1966. He received a M.S. degree in Aeronautical 
Engineering in 1992 and Ph.D. in Theoretical and Applied Mechanics in 1996, both at the University of Rome “La 
Sapienza”, Dept. of Mechanics and Aeronautics. 

He was Researcher at the University of Modena and Reggio Emilia, Faculty of Engineering, Dept. of Mechanical and 
Civil Engineering, 1996-2003.  

He is currently Associate Professor at the same University since January 2004. 
He was involved in investigations concerning: nonlinear vibrations of structures; nonlinear normal modes; axially 

moving systems; nonlinear vibration of shells with fluid structure interaction; gears modeling; non-smooth dynamics; 
Chaos; Nonlinear Time Series Analysis; Forecasting Methods in Oceanography. 

He cooperated with Prof. Vestroni, Prof. Sestieri and Prof. Mastroddi of the University of Rome “La Sapienza” and 
with with: Prof. Païdoussis (Mc Gill Univ. Canada); Prof. Vakakis (Univ. of Illinois at Urbana Champaign; recently 
National Technical Univ. of Athens, Greece); Prof. Amabili (Univ. of Parma, Italy). 

The teaching activity regards: Vibrations of Discrete and Continuous Systems; Signal Processing; Machine Theory 
and Machinery. 

He was coordinator of an international NATO CLG-Grant project on Nonlinear Dynamics of Shells with Fluid 
Structure Interaction and was the local coordinator of an Italian project on Shells Vibrations. 

His research activity regards also industrial problems, he cooperated for research and consultancies with several 
companies about: vehicle stability; experimental vibrations; clutch instabilities and failures. 

He was reviewer for the following international journals: SIAM Journal of Applied Mathematics, Nonlinear Dynamics, 
ASME Journal of Vibration and Acoustics, J. of Solids and Structures; J. of Sound and Vibration, Computer Methods in 
applied Mechanics and Engineering, Int. J. of Systems Science; and reviewer for the foundations: FCAR (Fonds pour la 
Formation de Chercheurs et l' Aide à la Recherche) Québec, CANADA; Natural Science and Engineering Research 
Council of Canada. 

He is in the international advisory editorial board of the journal: Communications in Nonlinear Science and Numerical 

Simulation, Elsevier.

He published a Book, more than 30 Journal papers and more than 50 conference papers. 

1
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Wolfgang Seemann

Wolfgang Seemann studied mechanical engineering at the University of Karlsruhe from 1980 

to 1985. After civil service he got a PhD also from the University of Karlsruhe, with a thesis 

on ‘Wave propagation in rotating or prestressed cylinders’ in 1991. In 1992 he left Karlsruhe 

to join the group of Prof. Peter Hagedorn to work as a postdoc. In 1998 he was appointed 

as Professor of Machine Dynamics at the University of Kaiserslautern. In 2003 he was ap-

pointed as professor in the Institute of Applied Mechanics of the University of Karlsruhe.
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Anand V. Singh
The University of Western Ontario

Anand graduated in 1968 with B. Sc. Eng. (First Class with Distinction) in Mechanical Engineering 
from Bihar Institute of Technology Sindri, India.  He then came to Canada and completed M.A.SC 
(1971) and Ph.D.(1975) degrees from the University of Ottawa.  After working with the Department of 
National Defence of Canada as a Defence Scientist and later with Ontario Hydro as a Design Engineer, 
he joined the University of Western Ontario in December 1984 as an assistant professor.  Currently, 
he is a professor in the Department of Mechanical and Materials Engineering.  Over the years he has 
taught: Dynamics, Kinematics and Dynamics of Machinery, Machine Component Design, Mechanical 
Vibrations, Modern Control Theory, Finite Element Methods, Theory of Plates and Shells. 

Research work during the period of his graduate studies dealt with the free vibration analysis of sand-
wich spherical shell using classical closed form solution methods.  Solutions were obtained in terms of 
the Legendre Polynomials of complex and real orders.  He continued working in the area of vibrations 
of plates and shells, but switched to numerical methods such as, the Rayleigh-Ritz and finite element 
methods.  Now he is totally involved with the field of computational solid mechanics including plates 
and shells.  His research activities include random vibrations, geometrically nonlinear analysis, lami-
nated and sandwich constructions, embedded piezo-electric materials, and visco-elastic materials.

Anand is married to Bimla and together they have two children, Bidhi (son) and Shikha (daughter), 
who are now independent and currently reside in Michigan, USA.  Bimla and Anand like to work in 
the garden, construct structures in the back yard, go for a walk, travel and enjoy life to the fullest.  
Currently, he is in the middle of renovating the basement that involves building a bath from scratch, 
framing walls and ceiling, dry-walling, and other physically rigorous jobs under her supervision.
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Gottfried Spelsberg-Korspeter 
Technische Universität Darmstadt 

On August 13th 1978 I was born in Dortmund Germany. 

I grew up in Dortmund, Düsseldorf and Ludwigsburg where I finished high-school (Abitur) in 
1998. After completion of the compulsory military service I started studying at TU Darmstadt 
in 1999. 

In 2001 I finished my preliminary diploma in industrial engineering and in mechanical 
engineering and decided to pursue my mechanical interests in the applied mechanics 
department with main focus on dynamics. Taking part in an exchange program of the 
industrial engineering department I spend the fall semester 2002 and the spring semester 
2003 at the University of Illinois at Urbana Champaign where I mainly worked in the area of 
operations research. 

In 2004 I finished my masters degree in applied mechanics with a thesis related to 
mechanical modelling of ultrasonic motors and went back to the University of Illinois to write 
my master thesis in industrial engineering again in the area of operations research. After 
completion I joined the research group of Professor Hagedorn in January 2005. The topic of 
my Ph.D. dissertation is about self excited vibrations in gyroscopic systems. 

My hobbies are hiking, climbing and other sports. 
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Biographical sketch 
Jörg Wauer 

I am a Professor of Technical Mechanics at the University of Karlsruhe, Germany, in the Department 
of Mechanical Engineering, holding this position since 1977. I apprenticed as a mechanic and studied 
mechanical engineering at the Engineering College of Kaiserslautern and the University of Karlsruhe. I 
received my Ing.-Grad. and Dipl.-Ing degree in 1964 from the Engineering College of Kaiserslautern 
and in 1969 from the University of Karlsruhe, respectively. At the University of Karlsruhe, I was 
promoted to Dr.-Ing. in 1972 and Docent habil. in 1976. My industrial experience includes positions as 
a mechanic specialist and design engineer. 

Structural dynamics and dynamics of machines are my principal research interests but during 
the last fifteen years, I extended this work to multi-field problems as dynamic fluid-structure interaction 
or vibrations of thermo-elastic and piezoelectric solids. I have authored or co-authored approximately 
150 scientific papers concerning the mentioned topics, and I am a co-author of a book on 
mathematical methods in engineering mechanics. Together with my colleague W. Seemann, in 2005 
we lectorated the translation of the 3-volume book “Engineering Mechanics” by Hibbeler into German 
with significant adaptations and enlargements. 

Teaching is the other part of my activities at the university. I gave courses in all undergraduate 
mechanics topics, and I taught and I am still teaching many advanced mechanics courses for graduate 
students as structural dynamics, dynamics of machines, measurement of mechanical vibrations, 
mathematical methods in engineering vibrations, stability of elastic structural members, and presently, 
dynamics of mechatronic systems.  

As the principal adviser, I promoted sixteen students to their Dr.-Ing. degree and two of them 
also to his habilitation. I am a member of GAMM and EUROMECH, I am active in several committees 
and work as a reviewer for several mechanics journals. In 2004 I received an honorary doctor degree 
from the Technical University of Sofia, Bulgaria.  

Besides all these scientific activities, from 1994 until 2002, I held an important position in 
administration of my faculty at the University of Karlsruhe: I was the so-called Studiendekan 
responsible for all our actual reform work in the curriculum of the study of Mechanical Engineering at 
the University of Karlsruhe. In addition, from 1999 until 2001, I chaired one of the University councils in 
Karlsruhe. Since 2000, I am a member of a nationwide committee for accrediting of Bachelor’s and 
Master’s studies in Engineering Sciences.  

May 2007 


