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PREFACE

The International Symposium on Vibrations of Continuous Systems is a forum for
leading researchers from across the globe to meet with their colleagues and present both
old and new ideas on the field. Each participant has been encouraged to either present
results of recent, significant research or to reflect on some aspect of the vibration of
continuous systems which is particularly interesting, unexpected, or unusual. This latter
type of presentation — of which there are several in the program — was proposed to
encourage participants to draw on understanding obtained through — in many cases —
decades of research.

The Fifth ISVCS takes place July 25-29, 2005. Its location is one of the most beautiful
places in Germany — Lake Konigssee in the heart of the Alpine National Park of
Berchtesgaden. Here, one finds Germany’s second highest mountain, Mount Watzmann
at 2713 m, Germany’s most picturesque lake with the Pilgrimage Church of St.
Bartholomew, and many beautiful villages, with Berchtesgaden as the central one.

The Berchtesgaden area boasts some of the most stunning mountain panoramas in the
German Alps. There are spectacular mountain gorges and inspiring mountain landscapes
inviting the visitor to enjoyable longer hikes and nice shorter walks which are essentially
level. The villages show local esprit with the typical German “Gemiitlichkeit”, while
Mount Obersalzberg documents some history from the 1930’s until the Second World
War. The Eagle’s Nest or Kehlsteinhaus gives the visitor an overwhelming panoramic
view of the Berchtesgaden area.

These Proceedings contain 29 summaries of the presentations to be made at the
Symposium and short biographical sketches submitted by many of the participants.

Editor
Al H. Nayfeh

Reviewing Editors
Stuart Dickinson
Jim Hutchinson
Fred Williams

Jorg Wauer

General Chairman
Arthur W, Leissa
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On Rotating Ring Dynamics: Instabilities under Harmonic Velocity Perturbation
Samuel F. Asokanthan'" and Jihyun Cho?
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Introduction

Dynamic stability behaviour of a rotating ring when subjected to harmonic perturbation in the input angular rate is
investigated and closed form stability conditions are obtained via an analytical approach. Bickford and Reddy [1]
investigated the problems concerned with in-plane vibrations of a rotating ring. In their study, effects of extensional and
shear deformation and of rotary inertia on the natural frequency variations were investigated. For higher rotational
speeds and for higher bending modes. the effects of shear deformation and rotary inertia were shown to be significant.
Recently, Huang and Soedel [2] investigated the in-plane vibration behaviour of rotating rings. They performed a
detailed study on the influence of rotational speed and an elastic support on the natural frequencies and mode shapes. In
addition, a general solution for forced vibration was formulated. Also, effects on the response due to Coriolis
acceleration have been examined. In the recent past, owing to the possible use of ring structures as part of vibratory
angular rate sensors, there has been a renewed interest in studying the dynamic characteristics of rotating flexible rings
(see e.g., Putty and Najafi [3]). Eley et al. [4] considered the Coriolis coupling effect between the in-plane and the out-
of-plane motions due to the input angular rate about three mutually perpendicular axes with the intent of applying their
findings to the design of dual axis angular rate sensors.

In the present study, the angular speed of a rotating ring is considered to be subjected to periodic fluctuations of small
intensity. Investigation of these effects on the ring dynamics can be considered essential for the use of rings in many
practical dynamic applications. To the best of the authors’ knowledge, there has been no study performed on the stability
of a rotating ring subjected to harmonic perturbation in input angular speed. However, stability of systems that are of
similar class has been performed in the past. Tan et al. [5] performed a stability analysis for a rotating beam subjected to
an input speed perturbation using the method of multiple scales, while Van Doorn and Asokanthan [6] used the method
of averaging for studying the stability of a rotating dual-spin spacecrafi.

Equation of Motion

The ring used for the present study is assumed (o possess isotropic and homogeneous material properties, and the
transverse shear deformation effects are considered negligible in accordance with the thin ring assumption. Figure |
illustrates the ring supported internally with eight springs which has radial and circumferential stiffness, &, and kg,
respectively. A body fixed frame, X —Y —Z | has been used for representing the angular motion of the ring with respect
to the inertial frame * R *, and the locations of the neutral surface elements in the rotational coordinates can be defined
by introducing curvilinear surface coordinatesa,, @, , @, . In the figure, r represents the mean radius of the ring, and
u, and u, represent, respectively, the transverse and circumferential displacements. £ and p represent, respectively,
the Young's modulus and density of the material. The area moment of inertia of the ring cross section about its neutral
axis is expressed as / = bh* /12, where i , b represent, respectively, the radial and axial thicknesses.

Figure 1. Schematic of a rotating ring with support springs
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Considering that the ring is rotating about the Z —axis with a certain angular rate, Q(r) . the equations that govern the
in-plane motion of the ring can be derived using the Hamilton’s principle:

—bif_i:.(u; +u})—£§;(n; ) + phQ2 (=20, )+ kg + phliiy + Oty +2€01,)=0, ()
;—i(!fa +u,) - b[:_;i(i'i; —u"" )+ phQ? (2ul —ul )+ k,u, +p}:(£i, -Qu, —2(1;}8): 0. 2)

The rotational rate © is assumed to be time-dependent in this study. and as a result the equations of motion include
terms that contain the angular acceleration term €. The second flexural modes are chosen for investigating natural
frequency variation with the input angular rate and for performing stability analysis. It is known that these modes are
generally adopted for typical angular rate sensor applications (see e.g., Putty and Najafi [3]). From Equations (1) and (2),
the general expression for the discretized equation can be written in terms of the generalized coordinate vector

a=lg ¢.f
Mij+Gq+Kq=0, 3)
and the system matrices can be derived as follows:

10 0 -20 2 e
M = - 7|, k=t o )
0 1+dm 2Qy 0 Qy K|+ K582

where M is the mass matrix in which a mass mismatch term &n is added to represent the ring asymmetry, G is the
skew-symmetric gyroscopic matrix which results from Coriolis acceleration and K is the stiffness matrix. The
approximated parameters ¥ , x; and &, are constant values that depend on the mode number » and the physical
properties of a ring. Further details of derivation of the equations can be found in the paper by Huang and Soedel [2].
The support springs are considered to possess significantly low stiffness and hence assumed not to have significant
effects on the ring dynamics. In the present study, the damping effects are also ignored for simplicity. For the purpose of
investigating the stability behaviour of a rotating ririg subjected to periodic perturbation in the angular rate, the input
angular rate is assumed to take the form:

Q= Q1+ ucosvit), 0<pu<<l (35)
where Q is the amplitude of the input angular rate, 4 represents the small dimensionless amplitude of fluctuation, and

1+ represents the frequency of the imposed periodic excitation. Since the input angular rate is assumed to be a periodic
function of time, the system can be regarded as a parametrically excited system, the excitation being harmonic.

Dynamic stability analysis

Owing to the speed-dependent gyroscopic coupling and system stiffness, it is known that bifurcations of natural
frequencie can take place. In order to illustrate this effect, the second exural mode is considered and the variations of
the corresponding natural frequencies with input angular rate are depicted in Fig. 2. As a result of an assumed mass
mismatch, dn, of 0.01%, it can be observed that the natural frequencies associated with a non-rotating ring system (i.e.,
input angular rate is zero) are not identical. It may be noted that this natural frequency variation with the input angular
rate as described above is essential for stability investigation since it is known that the instability regions near certain
combinations and multiples of these system natural frequencies are of significance in this class of systems (see e.g.. Van
Doorn and Asokanthan [6]).

1.8924

1.892

1.8918

Natural Frequency, (rad/sec)

e 5= Ton 5% 20m
Input Angular Rate, Q (rad/sec)

Figure 2. Natural frequency variations for a rotating ring with non-zero mass mismatch
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Before performing any analytical stability analysis, it is first necessary to decouple the equation of motion, which are
coupled via the gyroscopic and stiffness terms. A contact transformation is used in the present paper to decouple the
system, and for this purpose, the equations are formulated in the Hamiltonian form (see e.g., Van Doorn and Asokanthan
[6]). Then, the coordinates of the decoupled system are transformed to amplitude and phase variables @, ¢, so that an
asymptotic method such as the method of averaging may be applied. The closed-form stability conditions are obtained
via the method of averaging and plotted in the excitation frequency-amplitude space (v — ) as shown in Figure 3. The

hatched parts represent the unstable regions and the clear parts illustrate the stable regions.
01 ') e 'y

0.09
= p.os
0.07

0.06

Non- dimensional Amplitude,

2m 2w
1 § . 2
3.7835 L 3.7837 W 31,7818 ¢

Excitation Frequency,v (rad/sec) 1

Figure 3. Instability regions: undamped with non-zero mass mismatch: unstable regions

It can be seen that the instability region associated with the sum-type combination resonance, v = o, + @, , is relatively
larger than the regions associated with the sub-harmonic resonances, 1 = 2w, .2, . Also, it may be noted that with the
presence of some mass mismatch in the system, no instability region is found to exist for the difference-type
combination resonance, v = @, — @, . However, It is also observed from this analysis (not shown in this paper) that when
the ring is assumed to be perfect. i.e.. dm=0. instability regions are found only in the case of the sum and difference-
type of combination resonance. The instability regions become wider as input angular rate increases or when the
difference between non-rotational natural frequencies increases.

Conclusions

Dynamic stability analysis for a ring-type structure subjected to base rotation with periodic perturbations is
performed. The angular motion of the ring affects not only the gyroscopic coupling but also the system stiffness. The
method of averaging has been employed for deriving the instability conditions in closed-form. These conditions predict
the onset of instability behaviour characterised by exponential growth in response amplitudes, and are illustrated by
plotting the instability regions in the excitation frequency-excitation amplitude space. If the mass mismatch in the ring is
considered, instability regions are observed when the excitation frequencies are near the sub-harmonic or sum-type
combination resonance frequencies. In the case of no mass mismatch, instability regions are observed when the
excitation frequencies are near the sum and difference-type combination resonance frequencies. The understanding of
the instability behaviour as predicted in the present study is expected to result in a better insight into the dynamic
behaviour associated with applications that utilise rotating rings.
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A Unified Formulation to Assess Various Theories for the Free
Vibrations Analysis of Homogeneous and Multilayered Plates

Erasmo Carrera
Aerospace Department, Politecnico di Torino,
e.mail: carrera@polito.it

Flat panels are typical structural components employed in automotive, ship and aerospace vehicles. These
panels are usually constituted by traditional homogeneous metallic materials. However, non- homogeneous multi-
layered materials have been recently used to build large partions of these vehicles. Examples of multilayered panels
are laminated structures constituted by anisotropic composite materials, sandwich panels, layered structures used in
thermal protections and intelligent structural systems embedding piezo-layers. The free vibrational response of flat
panels often represent a key topic for the structural analyst. Many classical plate theories have been proposed for
traditional homogeneuos plates [1]. Refinements of these classical theory have been proposed to laminated structures
[2]. However, amendments are needed in classical and refined theories for the accurate evaluation of the response of
multilayered structures. Among them, the fulfillment of both continuity of displacement (the so called Zig-Zag effect,
Z7) and transverse shear and normal stresses (the so called interlaminar continuity, IC) at the interface between two
adjacent layers are such necessary amendments [3]. In [4] these requisites were referred to by the acronyms Co-
requirements which state that both displacements and transverse stress components are C'’—continuous functions in
the thickness coordinate z. An exhaustive overview of these subjects is given in the article by Noor, Burton and Bert

[5].

Comprehensive modeling of homogenoeus and multilayered plates is developed in this paper to assess the free vi-
bration response of homogeneous and multilayered plates:

— Classical theories formulated on the basis of the Principle of Virtual Displacement (PVD) (with only displacement
variables) and advanced mixed models related to the application of the Reissner Mixed Variational Theorem (RMVT)
[4] (with displacement and transverse stress variables) are considered.

- Botl:u Layer-Wise (LW) and Equivalent Single Layer (ESL) models have been addressed. Those theories which pre-
serve the number of variables independent of the number of layers are herein denotes by ESLM, while those theories
in which the same variables are independent in each layer are denoted by LWM.

— Linear up-to fourth order thickness expansions are discussed.

— The evaluations of transverse normal strain effects have been conducted by comparing constant, linear and higher
order distributions of transverse displacement components in the plate thickness directions.

All these modelings have been derived in a unified manner by referring to the Unified Formulation (UF) that has been
developed by the author in earlicr works and recently detailed in [6]. The availability of this large number of model-
ings permits one to furnish a quite exhaustive assessment of available plate theories in the free vibration analysis of

homogeneous and multilayered plates.



The numerical investigation has been restricted to those lamination schemes (orthotropic layers), geometries (rectan-
gular) and boundary conditions (simply supported) that permit analytical solutions in closed form. An example of plate
theories assessment is presented in Tables 1, which is related to a cross-ply laminated composite plates. Acronyms
have been used to denote different theories: L and E, denote LW and ESL variables descriptions, respectively; M and
D, denote formulations based on RMVT and PVD, respectively; Z and C denote inclusion of Zig-Zag Effects and
IC, respectively; 1,2,3.4 denote the order of the expansion used in the thickness layer/multilayer direction; d denotes
results that discard transverse normal strains €... Comparison of frequency predictions based upon the implemented
two-dimensional models reveals that the unified formulation is able to furnish both results (such as LM4) which are in
excellent agreement with the ones based on 3-D elasticity theory and results related to Classical Lamination Theory
(CLT) and First order Shear Deformation Theory (FSDT). A number (31) of additional theories have been considered
between LD4 and CLT analysis. These 31 additional theories are able to evaluate the approximations of the considered
two dimensional analyses (such as order of the expansion, ZZ effect and 1C inclusion etc.). Some conclusions from
Table 1 are listed below. — The possibility of describing a priori interlaminar continuous transverse normal stress
makes the mixed theories more attractive with respect to other available modelings. — A very accurate description of
the vibrational response of anisotropic, thick and very thick plates requires layer-wise description. — Any refinements
of classical models are meaningless, unless the effects of interlaminar continuous transverse shear and normal stresses

are both taken into account in a multilayered plate theory.
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2 4 10 20 100

Theories based on RMVT

LM4
LM3
LM2
LMI

EMZC3
EMZC2
EMZCI

EMZC3d
EMZC2d
EMZCl1d

EMC4
EMC3
EMC2
EMCI

Layer-Wise Models

5260  9.224 15.148 17.626 18.753
5259 9224 15.148 17.626 18.753
5247 9220 15.148 17.626 18.753
5.143  9.103 15.087 17.604 18.752
Equivalent Single Layer Models including ZZ and IC
5370 9371 15224 17.625 18.754
5847 90.846 15455 17.737 18.758
5.782  9.768 15423 17.759 18.814
... discarding transverse normal strains

5374 9377 15263 17.714 18.827
5.850  9.863 15.504 18.801 18.831
5782 9971 15433 17.773 18.830
ESLM results that discard ZZ and include IC

5361 9367 15.224 17.653 18.754
5365 9364 15221 17.652 18.754
5.781  9.757 15387 17.709 18.757
5572  9.522 15.260 17.703 18.826

Theories based on PVD

LD4
LD3
LD2
LDI

EDZ3
EDZ2
EDZ]1

EDZ3d
EDZ2d
EDZ1d

ED4
ED3
ED2
EDI

ED4d
ED3d
ED2d
FSDT
CLT

Layer-Wise Models

5260  9.224 15.148 17.626 18.753
5262 9224 15.148 17.626 18.753
5277 9.236 15.152 17.626 18.753
5414 9473 15335 17.703 18.761
Equivalent Single Layer Models including ZZ

5390  9.388 15232 17.655 18.754
5920 9938 15522 17.763 18.760
5.926 9.956 15563 17.817 18.819
.. .. discarding transverse normal strains

5.393 9394 15271 17.717 18.827
5927 9960 15572 17.829 18.833
5927 9.595 15.572 17.829 18.833
Classical Equivalent Single Layer Models

5380  9.384 15232 17.655 18.754
5392 9389 15.232 17.655 18.754
5920 9938 15522 17.763 18.759
5.927 9.960 15.573 17.829 18.833
.. .. discarding transverse normal strains

5393 9394 15271 17.717 18.827
5393 9394 15271 17.717 18.827
5927 9960 15573 17.829 18.833
5927 9960 15573 17.829 18.833
15.892 17.977 18.725 18.840 18.877

Table 1: Circular frequency parameter wy/ i%ET of Simply supported square plates Cross-ply symmetric laminates

E

' 2 : 3 = Grr — Gz —
0/90/90/0 (layers of equal thickness). Mechanical properties of the layers: = 40, s —E';f-—.SO

vir =vp: = vpr=0.25.

%

G
* "Ep

=.60,



9
Stability and Vibration of a Nonlinear Beam with Subcritical Axial Speed

Li-Qun Chen
Department of Mechanics, Shanghai University, Shanghai 200436, China

Modeling and analysis of transverse vibration are of considerable interest in the study of axially
moving beams. Thurman and Mote derived a nonlinear mode for coupled longitudinal and transverse
vibration of axially moving beams [1]. They reduced the governing equation for transverse motion by
neglecting the coupling. Wickert [2] supposed that the influence of longitudinal inertia could be neglected
(the quasi-static stretch assumption) to establish a decoupled transverse equation of motion. This assumption,
which has been widely used, means that the dynamic tension component is a function of time alone. This
investigation treats stability and nonlinear frequencies of axially moving beams with the emphasis on the
comparisons of the two models.

A uniform axially moving beam, with linear density p, elastic modulus £, cross-sectional area A, cross-
sectional area moment of inertial / and initial tension Py, travels at the constant axial transport speed ¢
between two boundaries separated by distance L. Consider only the bending vibration described by the
transverse displacement U(X,T) at the longitudinal coordinate X and time 7. Newton’s second law of motion
yields

p(Uarr +2cU, +‘:2U’X.r): [(Pn + AO-)U'.Y ]’.\' —(EIU,_“ )!x.r (n

where the axial disturbed stress o(X,7)=Eg (X.,T) and & is the Lagrangian strain accounting for geometric
nonlinearity due to small but finite stretching of the beam. The replacement of the exact value Ao by the

averaged value of the disturbed tension JJ.AU'dX/L leads to the model based on the quasi-static stretch
)

assumption. The dimensionless equations for the two models are respectively

2 3 )
w,, +2,,, +(yz - l)uwr +kiu, = Egk,zu,n u,, (2)

1 .,
u,,+2m,, +6/1 - l}f,,Ll +klu, . = Egkl'um Jju,:l dx (3)

Eq. (2) can be derived from the governing equation for coupled longitudinal and transverse vibration under
the assumption that #*<<u’ (Egs. (15) and (16) in [1]) by considering the transverse vibration only and setting
all longitudinal variables to zero. Eq. (3) has been obtained through uncoupling the governing equation for
coupled longitudinal and transverse vibration under the quasi-static stretch assumption (Eq. (30) in [2]). In
traditional derivation, Eq. (3) seems more exact than Eq. (2) because it is the transverse equation of motion in
which the longitudinal displacement field is taken into account. However, the derivation here indicates that
Eq. (2) can be reduced to Eq. (3) based on the quasi-static stretch assumption.

For beams with pinned or clamped ends, it has been proven that the following quantities [3]
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1= ([l 44l - o2 dkiul vokiut Jax

2 2 2 2.2 2. 2 2 (4)
1, = [| 4w el 2 sakiu 2 vekiu? [, dxfdx

are constants for the models corresponding to Egs. (2) and (3) respectively. Using the conserved quantities
defined by Eq. (4), one can prove that, if y<1, there exists a positive number M such that

e < M o G BN < Mo o 4] 0

for solutions to Egs. (2) and (3) with the initial conditions u(x,0)=a(x) and u,(x,0)=b(x). Inequality (5) means
that the vibration caused by a small initial disturbance is small. Therefore, based on both models, the straight

configuration of an axially moving beam is stable in the Lyapunov sense.

To calculate the frequencies of nonlinear free vibration about the straight configuration, the method
of multiple scales is directly applied to Egs. (2) and (3). They have the same order-£’ equation with the
solution uu(x,!)=a,,(51)e““'"“"" 'd”g),,(:c)Jrcc, where @, and ¢,(x) are respectively the n-th natural frequency and

complex mode function of the corresponding linear homogeneous system [4], and cc represents complex
conjugate to the previous term. Here the internal resonance is not considered, and u, includes only the n-th
mode vibration to calculate the n-th nonlinear frequency. The solvability condition of order-¢' yields

dan 0 dﬂu = 1 1.3

T: s X, d1 —*4-8&'"(.1’" (6)
where &, is the imaginary part of
[l dxso[aggiax o [4arax (47 dxe2 [odiaxgmax o
" Aio, [7.6,dx+7 [5.4. dx] e dio, [3.9,0x+7 7.4 dx] |
for Egs. (2) and (3) respectively. Integration of Eq. (6) gives the n-th nonlinear frequency
w:"' =w, + %s&f,aé" (8)

where ay, is a constant determined by the initial conditions. Eq. (8) indicates that the nonlinear characteristic
of the vibration is represented by «;', while there is no nonlinear effect when &,'=0. Fig. | shows the change

of the nonlinear characteristic ;'

varies with the axial speed p where the dashed line and the solid line
represent the results for Egs. (2) and (3) respectively. In all calculations, k=1.0 and k;=0.8. The linear critical
axial speeds for the first two modes are respectively y,=2.7045 and p,=5.2728. For both models, the
nonlinear characteristic increases with the growth of the axial speed, and it increases dramatically for the
speed approaching the critical speed. Besides, the higher order mode has the larger nonlinear characteristic.
From Eq. (8), it can be concluded that the difference between the nonlinear frequency and linear natural
frequency increases with the axial speed and the order of the mode. For the same parameters, the nonlinear
characteristic of Eq. (2) is larger than that of Eq. (3). Therefore, averaging the tension along the beam makes
the nonlinearity weaker. Fig. 2 shows the relationship between nonlinear frequencies and amplitudes, given
by Eq. (8), at different axial speed for £=0.005. In the figures, the dashed and solid lines represent the results
for Egs. (2) and (3) respectively. The two models yield almost the same results for small axial speed. The
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difference of the two models increases with the axial speed; it increases especially rapidly when the axially
speed is near the critical speed.
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Fig. 1. Nonlinear characteristics varying with the axial speed
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Fig. 2. The relationship between nonlinear frequencies and amplitudes at different axial speed

In conclusions, this presentation investigates two models of nonlinear free vibration of an axially moving
beam. The stability is proven for both models. The nonlinear frequencies of two models are calculated via the
method of multiple scales. Numerical results show that both models have the same tendencies to change with
related parameters, and give essentially the same results for small axial speed. However, the difference
increases when the axial speed grows.
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Three-dimensional natural frequency analysis of piezoelectric shells of
revolution by the Ritz method

Piotr CUPIAL
Cracow University of Technology, Institute of Applied Mechanics,
Al. Jana Pawla Il-go 37, 31-864 Krakow, Poland. Email; cupial@mech.pk.edu.pl

Piezoelectric shells find several applications, e.g. in measurements and mechatronics. One
such application is the use of cylindrical shells in ultrasonic micromotors. A number of
approximate piezoelectric shell theories are available in the literature, but their accuracy is still
under investigation and additional research into this subject is still of much importance. Below,
a summary is given of the extension of the approach used to the three-dimensional analysis of
clastic shells described by A.W. Leissa and J.-H. Kang in reference [1], to the study of
piezoelectric 3-D shells of revolution.

An orthonormal co-ordinate system (ct,0,8)is used to describe the geometry of the shell

of revolution, where o is measured along the meridional direction of the shell middle surface,
0 1s the circumferential- and £ - the normal direction. The extension of the variational

formulation of the elastic free-vibration problem to a piezoelectric shell is given by (more details
about the variational principle of piezoelectricity can be found in reference [2]):

a3 In hi2
[ [ [l=p0’U,8U, +USU, +UBU,) + 6,58, +0,5¢, + 6,08, + Coc o + GOy e + -
o 0-hi2

+6,007,5 — D,SE, — DySE, — D,SE, 1p,r,daddde = 0

The components of the strain tensor appearing in equation (1) have been derived using the
general tensor formulation in curvilinear co-ordinates discussed in reference [3]. The final form
of these expressions is as given in references [1] and [4]. In equation (1), D, Dy, D, stand for the

components of the electric displacement vector, and £, E,, E, are the components of the electric
field vector, which are related to the electrostatic potential in the following way:

g o Lo o a0 (2)

pe Oo. ! . 00 S o

p.and . are defined using the principal radii of curvature, similar as in references [1] and [4]:

pe = (R, +8), r, = (R, +E)sina 3)

A shell poled in the normal direction is considered, and the constitutive equations
(assuming the orthorhombic symmetry class mm2) have the following form:
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In all results discussed below, the displacements and electric potential are approximated by
polynomial functions. The following material properties, typical of a piezoelectric ceramic, have
been used:

TR 13.2-10'"(-N

N N N
mz), c,?=7.1-10‘“(m3), cljzc23:?.3-1010(r;?2), c,3=11.5-10'“(m-2-),
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1

. ; F k
e,3=l4.l(:1'2), k”=kn=?.124-l(}"’(£). k3,=5.84l‘10““(m), p=7‘5-103(”§).

To demonstrate the approach, the results will be discussed for a cylindrical shell of
constant thickness. Table | shows the convergence of the non-dimensional frequencies of
a cylindrical shell with the radius-to-length ratio R/L =0.5 and the thickness-to-length ratio
h/L=0.01. The shell ends are mechanically restrained and ‘clectrically unrestrained’ (open-
circuit condition, for which no potential is prescribed at any point). In the numerical analysis, an
cfficient algorithm to solve the generalized eigenvalue problem has been used and the need of
matrix inversion has been avoided. Additionally, the above electrical boundary condition is more
difficult to analyze than the case with a prescribed potential, since electrostatic potential can only
be determined up to an arbitrary constant. This fact has been taken into account in the algorithm.

Table 1. Non-dimensional frequencies @ = mé }l P ofa cylindrical shell.

\ yy

K1=K2= Circumferential wave number n

K3=K4 0 1 2 3 4 5 6
2 0.7538 0.5742 0.4707 0.4299 0.4164 0.4189 0.4350
4 0.7489 0.4896 0.3246 0.2343 0.1900 0.1867 0.2181
6 0.7489 0.4853 03164 0.2269 0.1855 0.1845 0.2171
8 0.7489 0.4849 0.3151 0.2253 0.1842 0.1836 0.2166
10 0.7489 0.4849 0.3150 0.2252 0.1840 0.1835 0.2165
12 0.7489 0.4848 0.3149 0.2250 0.1839 0.1834 0.2165
14 0.7489 0.4848 0.3148 0.2249 0.1838 0.1833 0.2164
16 0.7489 0.4848 0.3148 0.2249 0.1838 0.1833 0.2164
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The same number of polynomials (KI1=K2=K3=K4) has been used to approximate the
displacements and the electrostatic potential with respect to the axial co-ordinate. Quadratic
approximation has been found to be accurate enough in the -coordinate. It has also been
displayed that the use of linear approximation for the tangential displacements practically leaves
the results in Table 1 unchanged, but quadratic terms for the normal displacement and potential
are non-negligible.

In order to verify the results, Table 2 gives a comparison with the finite element analysis
(FEA) results obtained using the coupled-field capability of the finite element code ANSYS.
Solid brick elements have been used, with a linear approximation of the mechanical and electric
fields within the element. To achieve the necessary accuracy, a fine mesh had to be used and the
results shown were obtained with 160 elements along the circumferential direction, 40 elements
in the axial direction and 3- in the radial direction.

Table 2: Comparison of the lowest frequencies for a cylindrical shell with
R=5-10"7[m], L=10-10"[m], h =107 [m]

N 2450 [Hz] | 2457 [Hz] | 2891 [Hz) 3001 [Hz] 3645 [Hz]
Ritz method (n=5) (n=4) (n=6) (n=3) (n=7)

FEA (ANSYS) 2461 [Hz] | 2464 [Hz] | 2910 [Hz] 3011 [Hz] 3678 [Hz]
(Ansys-Ritz)/Ritz* 100% 0.4% 03% 0.7% 03% 0.9%

Even better agreement than that shown in Table 2 has been found for thick cylinders.

For vibrating piezoelectric continua piezoelectric coupling takes place through the
piezoelectric constants e, in constitutive equations (4). Proper approximate shell theories should
be able to correctly model this effect. The coupling depends on the values of material constants,
shell geometry and the mode under consideration. Table 3 shows the effect of the piezoelectric

coupling for the shell, the results of which were given in Table 1. The results termed “without
coupling” were obtained by setting all piezoelectric constants to zero.

Table 3. Effect of piezoelectric coupling on non-dimensional frequencies of a cylindrical shell

Circumferential wave number n
0 | 2 3 4 5 6

Without

3 0.7489 04719 0.3072 0.2178 0.1744 0.1690 0.1954
coupling

W“h 0.7489 0.4849 0.3150 0.2252 0.1840 0.1835 0.2165
coupling

‘z;’;:;‘;e 0% 2.8% 2.5% 3.4% 5.5% 8.6% 10.8%

The approach has also been used successfully for other shell geometries including spherical
shell sections and conical shells.
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Modal Data for a Layered Piezoelectric Cylinder and Their Applications*
Stanley B. Dong

Civil and Environmental Engineering Department
University of California
Los Angeles, California, 90095-1593, USA

Abstract

The spectral decomposition of the governing differential operator for layered piezoelec-
tric circular cylinder yields a complete set of modal data. These data consist of all propa-
gating modes as well as edge vibrations for the cylinder. Herein, these modal data are used
to construct steady-state Green's functions and to explore the reflection of monochromatic
waves arriving at the free end of the cylinder.

The structure is in the form of a right circular cylinder composed of any number of
perfectly bonded layers, each of constant thickness and distinct piezoelectric properties.
The cylinder may be hollow or solid, whose lateral surfaces are traction-free. The equations
of motion are based on linear piezoelectricity theory, Using cylindrical coordinates (r,8,2)
and finite element modeling over the thickness, the displacement /electric field has form

V(:‘... ﬂ.z,t) = Vmei(kﬂ.z—l—mﬂ-!-wt) (1)

where array Vy, contains the nodal displacement components (tr,up,u.) and electric
potential ¢. Upon inserting this field into the equations of motion, the following Hermitian
system of equations is obtained.

[(K; +m2Ky + mk, Ks + kiiKa — sz) + 'i(ng B ka;;)]Vm =0 (2)

with K3 ,K4,K5,Kg,M and K2.K3 as symmetric and antisymmetric matrices, respectively.
In this problem, circumferential mode number m is always assigned. Thus, this is a two
parameter eigenproblem where modal data can be extracted by using either axial wave
number Ky, or squared circular frequency w? as the eigenvalue parameter.

For w? as the eigenvalue, Eq. (2) takes the form

[(1 + m?Ka + mbnKs + K2 Ke) +i(mKa + knKa) Vi = 0*MVi  (3)

* Work done in collaboration with H. Bao, Lakehead University, Thunder Bay,
Ontario, Canada; A.H. Shah, The University of Manitoba, Winnipeg, Canada; and E.
Taciroglu, University of California, Los Angeles, California, USA. This presentation is
based on the results contained in Refs. (1) and (2).
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This algebraic eigenproblem is Hermitian so that only real w?’s are admitted. The eigen-
data extracted from Eq. (3) define all of the propagating modes in the cylinder.

If k,, acts as the eigenvalue parameter, then Eq. (2) becomes a quadratic eigenprob-

lemn.
[(K1 +m?Kyg — w*M + imKa) + ki (mKs + iKg) + k'ane] Via=10 (4)

With real w? assigned, the solution provide eigenvalues k,,’s and associated right eigen-
vectors ¢, ’s. Both real and complex conjugate pairs are possible. Real eigendata portray
monotonically decaying wave forms in the z-direction from the origin of coordinates, while
complex eigendata give decaying sinusoids. Because Eq. (4) can be reduced to a first
order system involving a non-symmetric matrix, in addition to right eigenvectors, there is
a system of left eigenvectors v, associated with the same eigenvalues k,’s.

Steady-state Green’s funetions are based on forced response to a time harmonic load.
The general form of this response was obtained by instating the load f,. after a Fourier
transform is effected to quell the z-dependence. A subsequent inverse Fourier transform
recovers the axial dependence. The solution form can be written in terms of two groups

of axial wave numbers, &} and k,,, according to traveling and decaying motions from the
origin along the positive and negative z-directions.

o=

o e wl f . vl f .
Vm(z) =1 Z E;ﬂ m_(bmn’-’»lk"mz +1 Z — md)mnelkm"z {5)
€l T bmmkn, O

Green’s function is based on the load or electric charge as a point source. Because of
convergence (or lack thereof) in the modal expansion of any point source, the source is
replaced by a uniform load or charge acting over a very small surface area. To represent
this source, a double modal summation is needed, i.e., In the ¢ and axial directions. While
such a representation of a point source requires a huge munber of terms, the structural
response on the other hand converges with substantially fewer terms. Green’s functions
for point loads and point charges are constructed on this basis and their convergence of
both their kinematic and force-type quantities is shown.

In wave reflection in a semi-infinitely long cylinder, a steady-state monochromatic
wave is assumed to arrive at the free end cross-section z = 0 from afar, i.e., at z = +co.
The reflected wave is represented by a basis of propagating modes and edge vibrations.

N
‘Vm == Z ﬂNQf’mnei(km"Z_nta_un z Z 0 (6)

n=1
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For a traction-free end, this condition prescribes that the combination of incoming and
reflected wave fields yields no surface traction on a point-wise basis over the free end, i.e.,

Rin +R™ =0 (7)

where R denotes the relevant traction components and electric potential and superscripts
in and re refer to the incident and reflected fields. In our analysis, R is an array of
the traction components and electric potential at the Gaussian points over the cylinder’s
end cross-section. The traction of reflected field is obtained by differentiating Eq. (6) to
form the deformation measures and using the piezoelectric constitutive relation. In our
investigations, Eq. (7) is solved on a least-squares basis using a finite number of modes.
An energy flux calculation is also performed to assure the consistency of the unknown
amplitudes of vibration. Reflections due to incoming axisymmetric (m = 0) and flexural
(m = 1) waves were studied.

For incoming axisymmetric waves, there is a particular frequency which enables an
end resonance condition. This phenomenon is characterized by extremely high amplitudes
of end motions at a certain frequency wvis-a-vis those of neighboring (i.e., slightly differ-
ent) frequencies. End resonance was first observed experimentally by Oliver (1957) in
a homogeneous, isotropic cylinder. A similar phenomenon can be predicted to occur in
piezoelectric cylinders.

Instead of a passive reflection of incoming waves, it is possible to modify this event by
imposing some voltage distribution over the free end, which is essentially a forced input.
In fact, if this applied voltage is out-of-phase with that of the incoming wave, it is possible
to extract electrical energy from it. This means of energy harvesting is intriguing.
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Free Vibration of Variable Thickness Skew Plates

Moshe Eisenberger and Igor Shufrin
Faculty of Civil and Environmental Engineering
Technion-Israel Institute of Technology
Technion City 32000, Israel

Abstract

Accurate prediction of the free vibration behavior of skew plates is of fundamental
importance in the design of structures such as swept wings and skew bridges. Although a
large number of available papers dealing with free vibrations of skew plates with uniform
thickness, the natural frequencies of skew plates with variable thickness have received little
attention. In this work the free vibration of variable thickness skew plate is analyzed using
classical plate theory. The solution is performed by the extended Kantorovich method [1] in
conjunction with the exact element method [2].

Consider a thin isotropic skew plate with variable thickness /(x, y) and arbitrary boundary
conditions. The out of plane energy functional I can be written in terms of the strain energy
of bending, and the kinetic energy of free vibration as follows [3]:

— Dw ’ .+ Dw . +2D(1+sin?(0)-veos*(O)w,,* +
- 2_(:0_53-(5)5[ 5[ +2D(sin?(0) +vcos* (O))w  w , —cos*(O)w? phw? |dxdy (1)
—4Dsin(@)w . w , —4Dsin(@)Dw w

where x, y are skew axes and @ is the external angle of the coordinate system. In accordance
with common notation w is transverse deflection, D is the plate bending rigidity, v is the
Poisson ratio, pis the density and @ is the angular frequency.

According to the extended Kantorovich method the solution is assumed as follows:
N
T
w= X, () () ={X}' {1} )
i=1

Also the plate thickness and rigidity are taken as

h(x,y)=HH (x)H (v} D(x,y)=DyD, (x)D,(») 3)
Then, assuming the solution in one direction a priory, for example {Y}, and substitution of
(2) and (3) into (1), integration over y direction, assignment of the first variation to zero, and
integration by parts lead to the system of ordinary differential equation of motion (4) and

natural boundary conditions (5, 6) in the x direction.
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where the S matrices result from integration over the y direction as follows:
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0
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]

According to the exact element method [2], the natural frequency for the x direction is
obtained as the frequency that causes a dynamic stiffness matrix be singular. The terms of the
stiffness matrix are clamping actions at the both ends of the strip element (5, 6) due to unit
displacement in one of the degrees of freedom when all other are restrained. The shape
functions are given as an exact solution for the equations of motion (4) which is done using
the power series method when the thickness variation is described in polynomial form as
well. In the next step the obtained solution is used as specified a priory, while the solution in
the second direction is calculated by another solution process. The iterations are repeated
until the result converges to a desired degree.

Simple separation of variables with only one term in series (2) leads to a bad approximation.
The use of additional terms improves the results significantly (see Table 1). Comparison
with existing solutions shows the high accuraty of the current results, which are obtained for

the plates with both uniform and variable thickness (see Table 2). Many examples are given
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to demonstrate the accuracy and flexibility of this approach. The effect of the thickness
variation on the natural frequencies of thin skew plates with different combinations of

boundary conditions is investigated.

Table 1: Convergence of frequency parameter !f=a12Ly4pH;/Dg for a CCCC rhombic plate,
L/L,y=1.0, 8=30°, v=0.3.

Number of Mode
terms 1 2 3 4 5

1 50.569 156.043 320.494 543.819 826.005
2 46.403 81.607 108.159 186.592 473.741
3 46.125 81.604 106.427 178.788 221.939
4 46.097 81.601 105.265 119.269 164.991
5 46.091 81.601 105.210 119.269 164.988
6 46.090 105.173 164.986
7 46.090 105.170 164.986
8 105.168
9 105.167

Table 2: Comparison of frequency parameter (2 Zm"prHU/DU rhombic plate (L,/L,=1.0)
with linear thickness variation in both directions: H,=Hy (1-Bx/L), H,=Hy (1-By/L,).

Mode
BC (& |5 |B I 3 3 7 s Reference

45 | 0 | o 105645 [106498 [148315 | 157241 [196.774 | Present

ccee 65.643 | 106495 | 148312 | 157.236 | 196.773 | [4]
45 |os | o LA47953 [ 77.531 [106972 | 115820 | 141985 | Present

48501 | 78256 | 110.940 (5]
0 | o | o 63772 |104971 | 148167 | 196301 |200.074 | Present

64818 | 104.955 | 148320 | 196.294 |210.658 | [4]
: 47230 | 76.933 | 108.330 | 142.803 | 146.541 | Present

§S88 160 |05 | 0 3ose 52115 [139.820 5]
60 los los | 24745 | 55445 | 77.805 |102.505 | 113.168 | Present

39308 | 62.676 | 94.284 [5]
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Free In-plane Vibration Analysis of Rectangular Plates with
Elastic Support Normal to the Edges

D.J. Gorman
Professor Emeritus, Dep’t of Mech. Eng., University of Ottawa
Ottawa, Canada KIN 6NS

Free in-plane vibration analysis of rectangular plates by the method of
superposition was introduced at the Fourth Symposium on Vibrations of Continuous
Systems [1]. Full length papers related to in-plane vibration of plates were subsequently
prepared [2],[3]. These papers contained listings of a number of relevant publications in
the literature. In the work described here the above analytical approach is extended to the

case of vibration of plates with uniform elastic support acting perpendicular to the plate
edges.

It was shown in reference [2] that the in-plane governing differential equations
can be written in dimensionless form as,

R g, S 2 2
3°U . Y12 97V %6| 27V 104U | .4
e, 59 < U=0 ]
5270 ok " [%anwa,ﬁ o ()
and,
5 azv 19%U . 123U 1282V+;{4V_0 @)
66| ¢ o9& |t o omae’ 62 on? =

where & and n are dimensionless coordinates, and U and V are plate in-plane
displacements in the & and ) directions, respectively. ¢ is the ratio of plate edge lengths,
b/a, and the dimensionless frequency of plate vibration A% =wa[p( 1-v*YE]"?, where w is
the circular frequency of vibration, p is the plate mass density, v is the Poisson ratio, and
E equals the Young’s modulus. All other symbols are as defined in reference [2].

Dimensionless normal and shear stresses are written as,

*
0‘ =
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Conditions to be satisfied at the boundaries are,
o, (&) =-KV(En), ando = - KU(E,n)

whereK| = ka(1-v*)/ E, and K; = k,a(1-v*)/ E
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Here k) and k are the actual elastic edge stiffnesses per unit edge length, per unit edge
deflection.

[t is assumed that elastic stiffness coefficients are equal along opposite edges. The
resulting symmetry permits us to examine one quarter of the plate only. Modes are
defined as being symmetric about a plate central axis if displacement along the axis is
zero and displacement normal to the axis is symmetrically distributed along it [2].
Conversely, if displacement normal to an axis is zero and that parallel to the axis is
symmetrically distributed about it, the mode is said to have an antisymmetric
distribution with respect to the axis. Modes will be symmetric-symmetric, ie., have
symmetric displacement distributions with respect to the plate central axes, ant-
symmetric — anti-symmetric , or will possess symmetry with respect to one axis and ant-
symmetry with respect to the other. Here, because of space limitations, we will restrict
the written discussion to analysis of symmetric-symmetric modes, only. The quarter plate
shown on the left hand side of Figure 1 is considered to be undergoing symmetric-
symmetric mode in-plane free vibration. Using the superposition method the vibration is
analyzed by superposition of the two forced vibration problems (building blocks) shown
schematically on the right hand side. Each building block is driven by a distributed
harmonic displacement enforced along one edge as indicated by the small line of arrows.

Displacements for the first building block are expressed in the form proposed by
Levy as,

U,n)= Z U, (n)cosempé 3)
and '
V(E.n)= z V. (n)sinempé (4)

m=12

where emp=(2m- 1)r1/2.

It will be noted that the solution satisfies symmetric mode conditions along the
axis, and a condition of zero shear stress along the edge, £=1. Following standard
procedures, the above series solutions are substituted in the governing differential
equations. A pair of coupled ordinary differential equations are thereby obtained.
Through judicious manipulating of this latter pair a fourth order homogeneous
differential equation involving the quantity Vi,(n), only, is obtained. Solving the
associated characteristic equation it is found that three forms of solution for Vin(n) are
possible, depending on the equation coefficients. The first form of solution is found to be,

VF"(T}) = AH?Sin]] BJ’"” + Blﬂ Cosllﬂﬂf‘r} + C‘fﬂ Sin }'mq + Dfﬂ COS}‘!‘HH (5)

where Ap, and B, etc., are constants to be evaluated according to the boundary
conditions. The quantities 3, and v, are as defined in reference [2]. The other two forms
of solution involve either all trigonometric functions or all hyperbolic functions.
Companion solutions for the quantities Uy () are now also available.
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Two of the constants of equation 5 are eliminated in order to satisfy conditions of
symmetry along the ¢ axis. A third is evaluated through enforcement of the condition of
zero shear stress along the driven edge. Amplitude of the imposed harmonic displacement
along the driven edge is expressed as,

Vm(’? )lu:t = i Em Sil] EH:‘P& (6)

m=12
Upon enforcing this latter boundary condition a complete solution for the building
block response in terms of the driving coefficients, E,, is available. The second building
block of Figure 1 constitutes essentially a mirror image of the first. Solution for its
response is readily extracted from that of the first through a transformation of axes as
described in reference [2].

Upon superimposing of the building block solutions, one-upon-the-other, standard
procedures are followed. Let there be K terms in each building block solution. The
difference between the normal stress and the elastic forces along the edge, n=I, is
expanded in an appropriate series of K terms. That of equation 6 is used here. Each
coefficient in this new boundary series is set equal to zero thus giving rise to K
homogeneous algebraic equations relating the 2K driving coefficients, E,, F, etc. A
second set of equations is obtained by enforcing equilibrium along the edge. £=1. The
coefficient matrix of this combined set of equations becomes our eigenvalue matrix.
Eigenvalues are those values of the parameter A” which cause the determinant of this
matrix to vanish.

It will be appreciated that certain limiting eigenvalues will be approached as the
elastic spring constants are allowed to approach their limits of zero and infinity. I is
found that convergence is rapid and correct limits are approached by each mode.

: U
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Figure 1. Schematic representation of building blocks employed in
Fully Symmetric mode analysis.
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Remarks on an Annular Plate with Partial Elastic Bedding

Peter Hagedorn, Daniel Hochlenert, Florian Fischer
Technische Universitdt Darmstadt, Department of Applied Mechanics, Germany

Introduction

The motivation for the problem discussed in this note was the modelling of squeal in disk brakes.
The squeal corresponds to self-excited vibrations of the brake system. The vibration pattern of a
squealing brake is dominated to a good extent by the dynamic behavior of the brake disk, which for
certain purposes can be modelled as an annular plate clamped at its inner boundary and undergoing
transverse vibrations. This annular plate is in contact with the brake pads, which in the present
note are approximated by elastic bedding acting over a sector of the plate. Understanding the
details of the eigenmodes and eigenfrequencies of such a plate can help to construct squeal free

brakes.

The present note is devoted to the calculation and discussion of the mode shapes of an annular
plate with partial elastic bedding. Some of the results obtained by adding the elastic bedding to
the plate were unexpected. They can however readily be understood intuitively and the phenomena
will be discussed making use of simpler problems, namely a vibrating string with partial bedding
and also of a simple two degree-of-freedom system.

Partially elastically bedded annular plate

An annular plate with partial elastic bedding is shown in figure 1. It is modelled as a KIRCHHOFF
plate of constant thickness and clamped at its inner radius a and free at the outer radius b. The
transverse displacement of the plate is described in polar coordinates by w(r,,t). The polar
coordinates are chosen such that the elastic bedding extends from ¢ = — gy to ¢ = ¢g. The inner
radius of the bedding is r; and the outer radius r, and the bedding constant is k, so that the
equation of motion of the plate is

,uh:(.;i—zw(r, @, t) + DVYw(r, @, t) + kK (r, wlw(r, e, t) =0

with K (r, ) =1 in the area of the bedding and K (r, p) =0 elsewhere. The corresponding eigenvalue

Yo

area of bedding
with stiffness k

Figure 1: Annular plate with partial elastic bedding
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problem can be solved in terms of BESSEL and trigonometric functions. For the calculation of a
limited number of eigenmodes it turns out to be more convenient to use a RiTz discretization in

the form

N M
W(r,p) = Z Z Cnm(r — @)™+ cos ((m — 1)) + spm(r — @)™ sin ((m - 1)e)

n=1m=1

for the eigenfunctions. The eigenvalue problem of the discretized system was solved and the eigenva-
lues behave in the expected manner, i.e. all eigenfrequencies of the system increase with increasing
bedding stiffness k. Understanding the changes in the mode shapes due to the bedding requires
some additional thoughts. Figure 2 shows the normalized mode shapes for one nodal circle and 3
diameters. The region of the bedding is marked as a black area. The mode shapes are normalized
to be 1 at r=b and p=m. One can see that the normalized mode shapes of the bedded plate may
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Figure 2: Normalized mode shapes without (left) and with (right) elastic bedding

have larger absolute values around p=0 than the corresponding mode shapes of the plate without
bedding. Similar results are obtained for other (not all) mode shapes. This is somehow surprising
since the bedding and therefore additional stiffness is now present around ¢ = 0. It does however
become completely clear with some additional considerations, which we will carry out first for a
bedded string and then for a 2 degree of freedom system.

Partially elastically bedded taut string

Since the mode shapes of the plate described above can not be calculated in closed form, we consider
the simpler problem of a bedded string, for which we find similar results. Figure 3 shows a taut
string (tension T', length L, mass per unit area ph) which is partially elastically bedded (stiffness per
unit length k, length of bedding b). The eigenfunctions of this system can be calculated by solving

L/2 k"’I: L/2 !
y @ @ ©) N
N pPA, T %k N

>z

Figure 3: Taut string with partial elastic bedding

the wave equation in closed form separately in the three sections and matching the solutions with
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continuity conditions. Figure 4 shows the analytically calculated fifth eigenfunction of the taut string
for b/L=0.2 and varying dimensionless stiffness of the bedding k* = kL?/T. The eigenfunctions are

1.5 T T T T T T ——r———
ff“'\ —k*=0
" \ —k=50 | |
—k*=70
0.5~

norm, eigenfunction

__ 7
\

0
=0.5 -
-1 -
region of beddin
1 1 1 1 L
0.2 0

1
0 0.1 .3 0.4 0.5 0.
x/L

Figure 4: Fifth eigenfunction of the taut string for varying &

normalized to have the same values at z/L=0.1 for different dimensionless stiffness of the bedding.
The results show similar behavior compared to the partially bedded plate. The fifth eigenfunction
clearly has a larger value around z/L = 0.5 for k* = 50 and k* = 70 than the corresponding
eigenfunction of the string without bedding. It is obvious that for very large values of k* there
are eigenfrequencies of the type w?=k/pA, since the influence of the stiffness of the string in the
bedded region then becomes negligible. By considering this problem of the bedded string we have
therefore obtained a more intuitive understanding of the mode shapes of the bedded plate problem.

Two degree of freedom analogue

One may think that the phenomenon of increasing the normalized amplitude of the eigenfunctions
at the location of additional bedding only occurs in continuous systems. However, similar results can
be found with the two degree of freedom system shown in figure 5. The right spring with stiffness

= = =1st vigenfrequency
—— 2nd sigenfrequency
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0 2 4 [ 8 10
k
Figure 5: Two degree of freedom model Figure 6: rs-components of the eigenvectors

ke corresponds to an additional bedding which is attached to the system at the body 2, whose
position is described by the coordinate . Figure 6 shows the x3 component of the eigenvectors of
this system for varying k. The eigenvectors are normalized such that the 1 component is 1. It is
clear that the absolute value of the 25 component of the eigenvector corresponding to the second
eigenfrequency increases with increasing k. For k going to infinity there is in the limit an eigenvector
(0,1). The corresponding eigenvalue is simply w® = ke/m, as can be immediately and intuitively
understood without carrying out any computations. Therefore the two degree of freedom model in
this respect shows a similar qualitative behavior as the plate and the string.
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IN-PLANE ANALYSIS OF VIBRATION AND STABILITY OF A LOADED ARCH
WITH VARIABLE CURVATURE

C. S. Huang*, K. Y. Nieh**, and M. C. Yang*
*: Department of Civil Engineering, National Chiao Tung University, Hsinchu, Taiwan
**: Department of Civil Engineering, Tamkang University, Tamsui, Taiwan

INTRODUCTION

Curved beam structures have been often used in civil, mechanical, and aerospace engineering
applications, for example, arch bridges, springs, and stiffeners in aircraft structures. Review articles
(Laura and Maurizi, 1987; Chidamparam and Leissa, 1993) reveal that most of the research
examines the vibrations of unloaded arches and rings, but rather few publications address the
vibrations of loaded arches and rings, even though dynamic analyses of loaded arches are frequently
needed in many engineering applications.

Most studies on the vibrations and stability of loaded circular arches considered cases with
inextensional centerline or no shear deformation (i.e. Chidamparam and Leissa, 1995: Kang et al.,
1996). Recently, Huang ez al. (2003) developed the governing cquations for such an arch using the
variational form presented by Washizu (1982) for the dynamical problems concerning an elastic
body under initial stresses. The developed governing equations include not only the effect of initial
axial force but also the effects of other initial stress resultants, such as shear force and moment due
to initial loading. This study basically extends the authors’ previous work on circular arches (Huang
etal., 2003) to arches with variable curvature. A series-based solution is established to investigate
the effects of the opening angle, the ratio of the long-axis length to the short-axis length, and a
slenderness parameter on the vibration frequencies and buckling loads of elliptic arches under
uniformly distributed vertical forces.

GOVERNING EQUATIONS

The equations governing the free vibration of a loaded arch and the associated boundary
conditions are developed according to the following variational principle given by Washizu (1982)
for the dynamic problem of an elastic body with equilibrium initial stresses, 0',5-0) s

2
JI{T—U—H{(}-,E,.O)EE,-H}:!V dt =0, (1
1 v

where 7"and U are the kinetic and strain energies, given by
I um o 1 (L
T = jlj;jip{vz +w2)av, U= gjia,jg,.j lay, (2)

p 1is the material density, and the dots denote the derivative with respect to time. In the strain
componentse;; , the superscript “L” represents infinitesimal strain parts, while the superscript “H”
denotes high order terms. The term with o represents the additional strain energy contributed by
the initial static stresses.

As in Timoshenko first-order beam theory, the in-plane displacement components of an arch can
be assumed to be
V(r,0.0)=v(0,0)— zy(0,1) and  W(r,0,1)=w@,1), (3)
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where v and w represent the tangential and radial displacements of the centroidal axis, respectively,
and  y is the angle of rotation of the centroidal axis due to bending only. Introduce the following
definition of stress resultants:

s 0
(N,M)= [agp(l,z)dd, Q= Jﬂrad/l, (N(U),M{U},P{O))=/J;aég)(l,z,zz)d,4.and
A

©9,70) = (69 ,z)da- =
A

The relationships between the stress resultants and the displacement components for an arch with

h/R (where h and R are the thickness of arch and the radius of the centroidal axis, respectively)
—r "
sufficiently less than unity are

N=EAZ 4y, M=%, - ALYy, P By und e iGr Y (5)
oS R oS oS R oS R R

where § is the arc length coordinate; £ and G are elastic and shear moduli, respectively; 4 and 7 are

the area and moment of inertia of the cross section, respectively; and x is the correction factor for

the shear force.

By performing the variation as indicated in eqn (1), the governing equations for the free
vibrations of a statically loaded arch with the displacement field specified by eqns (3) are obtained
and expressed as

(0) (0)

N'+g+(N(0)v'+M(0}y/’ + Lua—Q{U}w)'+N—w’~—l—(N(0}v+M{my/) = pAV (6a)
R R R R2
(0) (0) (0) () (0)
[0k —%+ (NOy — NR y— MR w) — NR v - MR w'+0©® V—; -h;?—z w= pAiv, (6b)

N (0) 0) . (0) (0)
M
M +Q+MOv e 2y pOyry M 0Oy vy Moo B
R R R" g2 R2

W +{T(U))'w =plyp (6c)
where the primes denote derivatives with respect to .

Substituting the relations between stress resultants and displacement components into the
governing equations yields a set of three differential equations with complicated variable
coefficients in terms of the displacement functions. The static solution is first found for determining
the distribution of initial stress resultants caused by static loading. Then, the solutions for vibration
frequencies and buckling loads are obtained by solving the proposed governing equations. A general
analytical solution to the governing equations is obtained by decomposing the entire arch under
consideration into several sub-domains and establishing a dynamic stiffness matrix for each
sub-domain. The dynamic stiffness matrix is developed according to a series solution of the
governing equations defined in the sub-domain.

RESULTS AND DISCUSSION

Consider an elliptic arch with »/a=0.5 and 4 =20 and subjected to uniform static vertical loads
with intensity  y, where a and b are the long-axis length and short-axis length, respectively, and
u=2alJ114. Figure 1 exhibits the variation of &(=wL?/pa/El, where L=2a) with v
(=s.* 1 EI') for a clamped arch with opening angle @, =60, considering various combinations of
static stress resultants, namely MV, 07, M%m, P, and 7 in eqns (6a)-(6¢). In the legend of the
figure, the stress resultants inside parentheses are those considered in eqns (6a)-(6¢) to obtain the
results. The lable (ALL) indcates the results obtained by considering all the stress resultants in eqns
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(6a)-(6¢). Only the results for the first symmetric mode are shown. Traditionally, the static axial
force N”is thought of as the most important factor that influences the vibration behavior of a
preloaded -beam. Figure 1 reveals considerable differences between the results obtained b
considering all the static stress resultants in eqns. (6a)-(6¢) and those obtained by considering N9
only, especially in the region of small &. Figure 2 plots the buckling loads as a function of opening
angle. In the legend of the figure, S1 and Al represent the buckling loads that correspond to the first
symmetric and anti-symmetric modes, respectively. The buckling loads were determined by
considering all initial stress resultants or N only. Figure 2 also depicts the results of Nich e
al.(2002), based on the theory neglecting shear deformation and represented by £,9 =0 in the
legend of the figure.
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Fig.1 Variation of & with Vforan elliptic arch Fig. 2 Variation of buckling loads with, for elliptic
with a/b=0.5, p=20,and 6,=60" arches with a/b=0.5 and p=20
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The Crosswise Series Superposition Method in Solid Mechanics

James R. Hutchinson
Department of Civil and Environmental Engineering, University of California, Davis

This paper is intended primarily as a tutorial on the crosswise series superposition method in
solid mechanics. Its history will be outlined and some results from recent work-in-progress will also be
presented. This method has been called by a number of different names in the past, including:
Mathieu’s method, the Fourier series method, the exact method, and the superposition method.
Therefore, I have chosen to call it by another, and I hope, even more descriptive name. The method of
solution has an interesting history in that it has been apparently been rediscovered a number of times.
Mathieu [1] first applied the method in 1890 to plane strain problem of a rectangular plate loaded with
normal stress distributed on the boundary. In 1933 Taylor [2] applied the method to the lateral buckling
of a rectangular plate with four clamped edges subjected to “thrusts in its plane and perpendicular to its
edges.” For the numerical solution Taylor limited the solution to a square plate with equal thrusts along
each edge. In 1936 Tomotika [3] solved the problem of the transverse vibration of a square plate
clamped at four edges by the same method. In 1938 Timoshenko [4] used the method to solve the static
problem of the bending of rectangular plates with clamped edges. Timoshenko limited his numerical
work to the square plate with a uniform load. Timoshenko gave more of a physical description of the
process than Taylor or Tomotika, but the solution steps were almost identical in all three papers.
Tomotika did reference the work of Taylor, but Timoshenko did not mention either, even though his
work was two years after Tomotika’s and 5 years after Taylor’s. Following Tomotika’s work, a number
of other researchers applied the method to rectangular plate vibrations. In 1944 Pickett [5] applied the
method to plane stress problems in a rectangular domain, and to the problem of the axial compression of
circular cylinders. In 1967 Hutchinson [6] applied the method to the problem to the axisymmetric
vibrations of a solid elastic cylinder encased in a rigid container. [ also wrote a number of follow-on
papers on the vibrations of cylinders using the crosswise series superposition method. In 1976 Gorman
[7] wrote the first of many papers, and two books, using this method for the vibration of rectangular
plates. Other vibration problems such as Box Type Structures, Rectangular Parallelepipeds and Open
Cylindrical Shells have also been solved using this method. Space limitations preclude my giving
specific reference to these.

To describe the method I will consider Tomotika’s problem of the rectangular plate, which is
fixed on all four edges. As Tomotika did, I will limit the solution to the modes that are symmetric in
both x and y. The governing differential equation is:

7w
DV W pew 1

P o’ ()

Assuming sinusoidal motion w = W cos wr and defining k*as pw?/D equation (1) becomes,

Vi-k')\w =0

{ ) 2)

Solution forms which are symmetric in both x and y can be written in the following form,
W =cosaxcosfy  where «+ p%==k? (3)

The plate has dimensions 2a in the x direction and 24 in the y direction, with the origin at the center. The
boundary conditions for this problem are that W(a,y) = 0, W(x,b) = 0, W.(a,y)=0,and W (x,b) =0. As
pointed out by Taylor Tomotika and Timoshenko, these boundary conditions do not allow for the
satisfaction of both boundary conditions on two opposite edges. Therefore they chose to satisfy one
boundary condition on each edge. Their choice was to satisfy the displacement boundary conditions
identically. The total solution can be written as two infinite series.
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W= 2 A, [at cosf,y +a, cosﬁzy]cos o, Xx+ 2 B, [b, cosa,x +b, cosazx]cos By 4

n=] n=1

For the A series 8* = k* —c; and 8} =k’ — e}, and for the B series o] = k* -8} and o] = —k* - 8}
The o, are chosen so that the A series will satisfy W(a,y) =0, the 8, are chosen so that the B series will
satisfy W(x,b) =0, the @, and a, are chosen so that the A series will satisfy W(x,b) = 0, and the b, and b,
are chosen so that the B series will satisfy W(a,y) = 0. Thus, the choice can be made that,

a, =(2n-1)x/2a, B, =(2n-1)x/2b, a =cosPb, a,=-cosPb, b =cosa,a, b,=-cosaa (5)

At this point it is evident why the name crosswise was used to describe the method. One can view the A
series as a Fourier series in x and the B series as a Fourier series in y; however, the A series coefficients
are functions of y and the B series coefficients are functions of x. Each series, therefore. affects the other
in a crosswise fashion. The slopes are given by the expressions,

W, = E A, [—n, cos B,y — a,cos B,y Ja, sina, x + 2 B, [—b,rx, sina,x — by, sin o:zx]cosﬁﬂy (6)

nw=] =

W, = E A,[-a,B,sin By - a,B,sinf,y]cose, x + 2 B,[-b,cosa,x - b, cosa,x|B, sinf, (7)

n=1 =1

The slope boundary conditions are satisfied by applying orthogonality along each edge. Thus,

(2m-1)x (2m-1)n

vand o =2— T (8)

b a
[w_(a,y)cosp,ydy =0 J‘WI [(x,b)cosa, xdx =0 where 8, = - >
0 0 - a

This leads to the following matrix form,

[[CII] [CIZ]:H{A}}={{O}} )
[ea] [ea]]l{B} {0}

where ¢, and ¢,, are diagonal matrices and ¢, and ¢,, are full matrices. The solution process is to search
for the frequencies, which make the determinant of the C matrix zero. It should be noted that each series
may be truncated with a different number of terms. This author has found it best to make the number of

terms proportional to the aspect ratio. Thus if b = 2a make N, = 2N,, where N, is the number of terms in
the A series and N, is the number of terms in the B series.

There are a number of arbitrary choices that are made in this solution. There is the choice of the
a’s and b’s. The a, and @, must only be in the proportion chosen, and likewise with the b, and b,. The
choice of which boundary conditions to satisfy identically and which to satisfy by orthogonality are even
more arbitrary. For instance one could choose to satisfy the slope conditions identically and the
displacement conditions by orthogonality. This could be done by taking,

a,=(n-1)wla, py=(n-1)rlb, a,=p,sinpb, a,=-Psinfb b =a,sina,a, b,=-a,sina,a (10)

b a L 1 1 —
W (ay)cosp,ydy =0 [W(xb)cosa,xdx =0 where B, = %’E , and a, = im-T (11)
0 1]

m
a

It would also be possible to satisfy the displacement identically along one edge and the slope on the
other, and the other two boundary conditions by orthogonality.
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What is shown abaove is the basic process, but the various authors have expressed the process
differently while going through the same steps. I described the process for satisfying the boundary
conditions, which were not satisfied identically, as an application of orthogonality. Taylor, Tomotika,
Timoshenko, and Gorman express it as a Fourier expansion. For instance those authors, in satisfying the
condition W, (x,b) = 0 would say the A series is a Fourier cosine series so the B series needs to also be
expanded as a Fourier cosine series, and each coefficient in the two-series expansion must vanish. This,
of course, is exactly what the orthogonalization in equations (8) accomplishes. Another difference is
that many of the authors, in recognition of the fact that the f3’s in the A series and the «'s in the B series
can be imaginary, split each series into two series so that everything will be real. I prefer to handle that
detail at the programming level. The € matrix will contain expressions with «,sin ¢a and cosa,a with
similar expressions for the other «’s and f’s. In the computer program I check if « is positive or
negative, if positive I return the sine and cosine as written, if negative,

a,sinaya is returned as —|a}|(1—e"1|”‘f") and cosa,a is returned as (l+e'zl”']"] (12)

~|ety|a

These expressions are the hyperbolic sine and cosine normalized by 2e The reason for the

normalization is to prevent computer overflow.

As mentioned above, Timoshenko explained the process in physical terms. He considered the
moments along the boundary y = b from the A series and the moments along the boundary x = a from the
B series as acting to force the slopes to zero. Gorman in his papers carries that process one step further.
He shows “building blocks™ corresponding to each of the series with the moments along their edges and
considers the process as a superposition of these blocks. This process has some merit in visualizing
plate problems, but does not lend itself well to the solid cylinder and rectangular parallelepiped
formulations.

Pickett noted that he ran into convergence problems for the problem of the axial compression of
circular cylinders. He required that both ends of the cylinder be fully clamped and the cylindrical
surfaces be free. There is a singularity that can be expected to occur at the corner where the cylindrical
surface meets the end. He did not say how many terms he had chosen; however, the paper was written
before the advent of the digital computer, which would have greatly limited him. So one cannot say
whether or not the solution would have converged with more terms. [ recently attempted the solution of
the vibrating cylinder, which is fully clamped at one end and free on the other surfaces. I also ran into
convergence problems. The solution converged reasonably well for the fundamental frequency, but the
higher frequencies did not converge well nor compare well with known results. The problem could have
been in the formulation, the computer program, or the existence of the singularity. The next step will be
to take a careful look at the mode shapes to see if that will shed any light on the problem. As far as I
have been able to determine, convergence has not been a problem for any of the plate problems.
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Recent advances in asymptotic modeling in vibration analysis.
S. llanko

Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand.

Background

The Rayleigh-Ritz and the Galerkin methods are widely used in the vibration analysis of continuous systems. They are
approximate methods and require the displacement form to be expressed as a series of product of admissible shape
functions and undetermined coefficients. In vibration analysis, the Rayleigh-Ritz method gives upperbound values for
the natural frequencies. The proof of this bounded nature of the solution appears to have been first reported by Lord
Rayleigh [1,2] and explained clearly by Gould [3]. Galerkin's method also yields upperbound results and gives rise to
the same stiffness and mass matrices as the Rayleigh-Ritz method if the admissible functions used are the same.
Although Rayleigh introduced the notion of minimising the expression for the frequency in the form of a quotient called
the Rayleigh Quotient [1], it was Ritz [4] who presented the popular minimisation procedure in which the potential and
kinetic energy terms as expressed as quadratic functions of undetermined displacement coefficients leading to a simple
eigenvalue matrix equation.

An essential requirement of the Rayleigh-Ritz method is that the displacement functions used must not violate any
geometric constraints such as that translation or rotation be zero at the supports or be continuous at connections. This
limitation may be overcome by using the Lagrangian multiplier method but it involves two sets of equations: the
constraint equations and the modified minimization equations. The formulation and solution of the resulting eigenvalue
problem become more complicated. In addition, continuous constraints such as line supports do not result in explicit
constraint equations that can be readily used, and need to be approximated by a series of point supports or by other
means.

A more convenient method of handling constraints was introduced by Courant in 1943 [5] by replacing rigid supports
with partial elastic restraints of very high stiffness. With partial restraints the admissibility requirements are relaxed and
their effect in controlling the translation or rotation is considered through the strain energy terms associated with their
deformation. This idea has subsequently been adopted into other mathematical procedures to solve problems in a vast
range of disciplines due to the contribution of Zienkiewicz [6, 7] in what is now well known as the penalty function
method. In vibration analysis, this method has also been extended by Yuan and Dickinson and others [8] for the analysis
of connected systems and also plates with cracks.

One drawback with this approach is that it is not possible to determine the error caused by replacing a rigid constraint
with a restraint of large stiffness. If the stiffness parameters used are not sufficiently large, the error due to the violation
of the constraint may be too large, but a very high stiffness value could cause numerical problems such as ill
conditioning, A suitable stiffness value is usually found by trial and error until the solution shows numerical
convergence. In addition, the upper bound nature of the Rayleigh-Ritz solution would be lost by replacing a constraint
with a restraint as the resulting solution is an upper bound to a lower bound model.

However, recent publications show that it is possible to overcome these problems by using positive and negative values
for the stiffness of artificial restraints in asymptotic models [9-12]. It has been proven that by using a combination of
large positive and negative stiffness values it is possible to determine the maximum possible error due to the modelling
[9]. The proof is based on Rayleigh’s theorem of separation [1, 3]. Although Lord Rayleigh [1] did not suggest the use of
large stiffness to model constraints, he derived the theorem of separation by treating a constrained system as a special
case of non-constrained system where either the kinetic energy or potential energy associated with the motion of the
constrained coordinate was taken as infinite. The expression for the natural frequencies of the unconstrained system was
determined by expanding a determinantal frequency equation. A simpler mathematical proof of the theorem of
separation was presented by Gould [3]. The author was unaware of these when he first proposed the idea of using
masses instead of stiffness to obtain true upper bound solutions to constrained systems at the First International
Symposium on Vibration of Continuous Systems [13]. This idea did not receive much support because using large
masses to enforce continuity of displacement at joints seemed awkward compared to using springs with large stiffness.
While replacing a stiff spring support with a large inertial body could be easily visualised, rigidly connecting two
elements by introducing a mass is harder to imagine. In order to do this, it is necessary to introduce a mass that vibrates
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at the relative speed between the connected elements. Although one could think of a complicated pulley system to cause
a mass to vibrate at such a relative speed, and the introduction of an artificial mass is only needed in a mathematical
sense, this idea was not well received. During the informal discussion session, the author then proposed the use of
restraints with negative stiffness and these too raised questions about the possibility of introducing instability. However,
subsequent research has shown that this idea works well [9]. The work presented in [9] also came under constructive
criticism at a seminar [14] for not having a theoretical proof as it was only a demonstration. Questions were still raised
about potential problems with instability and the existence of natural frequencies of negatively restrained systems. The
author subsequently arrived at a conditional proof that relied on their being a proof for the separation of natural
frequencies of the constrained systems. Professor Hagedorn [15], who was at the University of Canterbury at that time,
introduced this proof in Reference [3] to the author. The author then derived two theorems of existence and convergence
of natural frequencies of systems with positive and negative restraints. The theorems in [10] could be inferred from
Rayleigh's work but its effect on asymptotic modelling and the use of negative stiffness for this purpose are not readily
obtainable from his work. Subsequently, the theorems in Reference [10] were used to derive another proof showing that
the critical loads of structures could also be found using asymptotic modelling in the same way [11].

Existence and convergence of natural frequencies of systems carrying artificial stiffness or inertial restraints

The theorems presented in Reference [10] were derived assuming that each constraint resulted in the loss of one
vibratory degree of freedom. That is to say, all constraints and asymptotic restraints were associated with a mass or
inertia. However the bounding nature of the asymptotic models has been shown to be true even for systems subject to
constraints that are not associated with any mass or inertia [12]. For example, a massless cantilever beam carrying a
particle of mass m at a point is a single degree of freedom system. By introducing a prop at mid-span, the displacement
form would be constrained but it would still be a one degree of freedom system. The theorems presented in [12] are as
follows:

Theorem 1 (a): If i restraints of positive or negative stiffness are added to an n degree of freedom system (A4) where
h<n, along coordinates that are directly associated with a mass or inertia, then for the resulting system (A,), there exist
at least (n-h) natural frequencies and modes.

Theorem 1 (b): Furthermore, as the / stiffness parameters approach infinity, the (n-h) natural frequencies and modes of
System A, would asymptotically approach those of the n degree of freedom system subject to /i constraints (A},).

Theorem 2 (a): If h restraints of positive or negative stiffness are added to an n degree of freedom system (4), along
coordinates that are not directly associated with a mass or inertia, then for the resulting system (Am), there exist at least
(n) natural frequencies and modes for all positive values of stiffness, and for very large values of negative stiffness, but
for a finite range of negative stiffness values, in the vicinity of 4 specific critical values, some of the frequencies may
not exist.

Theorem 2 (b):  As the magnitudes of the A stiffness parameters approach infinity, the n natural frequencies and modes
of System 4 would asymptotically approach those of the n degree of freedom system subject to s constraints (Aj,),
irrespective of the sign of the stiffness.

The proofs for the above theorems are given in References [10, 12]. Similar proof is given in Reference [11] to show
that critical loads of linear structures with constraints are also bracketed and approached by the critical loads of the
corresponding asymptotic model.

While the theorems of existence and convergence of natural frequencies of negatively or positively restrained systems
Jjustify the use of asymptotic modelling for vibration analysis, there still remains a practical problem: in any practical
application the magnitude of negative stiffness values must be greater than the highest critical stiffness parameter to
ensure that the correct modes are being traced. To overcome this problem, the use of positive and negative artificial
mass or inertia has been proposed. The justification comes in the form of the following theorems which have recently
been accepted for publication [16].

Theorem 3 (a): 1If h artificial inertial restraints of positive or negative mass are added to an n degree of freedom system
A where h<n, 50 as to resist the motion along & coordinates cach of which is already associated with a mass or moment
of inertia, then for the resulting system A,, there exist at least (n-h) natural frequencies and modes.
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Theorem 3 (b):  Furthermore, as the /r inertial parameters approach infinity, (n-h) natural frequencies and modes of
System A, would asymptotically approach those of the corresponding constrained system A, from above in the case of
positive inertial terms, and from below otherwise.

Theorem 4 (a): 1f h artificial inertial restraints of positive or negative mass are added to an n degree of freedom system
A, so as to resist the motion along / coordinates, none of which is already associated with a mass or moment of inertia,
then for the resulting system A, there exist at least n natural frequencies and modes.

Theorem 4 (b):  Furthermore, as the / inertial parameters approach infinity, n natural frequencies and modes of System
Ay would asymptotically approach those of the corresponding constrained system Ay, from above in the case of
positive inertial terms, and from below otherwise.

Unlike the case of asymptotic modelling with artificial elastic restraints of positive and negative stiffness, the use of
positive and negative inertial terms does not introduce instability at lower modes. Therefore asymptotic modelling with
positive and negative terms may be conveniently employed in natural frequency calculations using the Rayleigh-Ritz
procedure, without the need to select admissible functions which satisfy geometric constraint conditions.

Concluding Remarks

A brief review of the recent advances in modelling constraints with artificial restraints has been presented. Although the
use of positive and negative stiffness values enables the determination and control of errors due to violation of the
constraints, the introduction of instability through the negative restraints may cause difficulties. The use of large positive
and negative masses has been proposed as an alternative route to asymptotic modelling.
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Optimum Design of Prismatic Plate Assemblies with Spectral Gap Constraints

David Kennedy, Owen J. O’Leary and Frederic W. Williams
Cardiff School of Engineering, Cardiff University, Cardiff CF24 0YF, UK

When designing structures positioned close to an excitation source, the inclusion of spectral gap
constraints (i.e. frequency ranges required to contain no natural frequencies) reduces the potentially
destructive effects of resonance. Although spectral gaps can be created by the strategic addition of
non-structural mass' or bracing’, optimum design subject to multiple spectral gap constraints
demands a more efficient use of mass within the optimisation process’.

The software VICONOPT covers the buckling and vibration analysis, and optimum design, of
prismatic plate assemblies such as aircraft wing and fuselage panels. Although more general options
are available, attention is here confined to the minimum mass design of isotropic stiffened panels
with simply supported ends, such that the response varies sinusoidally with m half-waves along the
length of the panel. Exact solution of the governing plate equations, without discretisation, results in
a transcendental eigenproblem which is solved reliably and efficiently by the Wittrick-Williams
(W-W) algorithm’. In vibration problems, this algorithm determines J(/ ). the number of undamped
natural frequencies exceeded by a trial frequency .

Optimum design varies the plate widths and thicknesses in order to minimise the panel mass subject
to buckling, frequency and other constraints. In the strategy of Fig. 1, the (outer) sizing cycle
calculates the constraints and sensitivities (step 3), which are used (step 5) by the method of feasible
directions’ in the (inner) CONMIN cycle. The stabilisation procedure (steps 2 and 7), adjusts the
resulting design to a “just stable” configuration in which the most critical constraint is just satisfied.
In buckling problems this is achieved by multiplying all the thickness design variables by the same
factor F (whose value is determined iteratively) and leaving the plate widths unchanged. However,
because this process alters both stiffness and mass, natural frequencies are not guaranteed to vary
monotonically with F . Theoretical and numerical studies’ have established a stabilisation rule for
fundamental natural frequency constraints whereby the plate thicknesses are multiplied by F and
their widths by F'“, where 0.1 < < 0.4 . The examples below use @ = 0.3,

(1] Initial analysis
[2] Initial stabilisation (0./<a <0.4)
~ (3] Constraint and sensitivity analysis

~ [4] Move limit calculation
. [5] CONMIN optimisation
k- 2 [6]  If CONMIN design satisfies all constraints, go to [12]
z z [7] Stabilisation (0.1 < a <0.4)
_“5"” = [8]  Ifjust stable design satisfies all constraints, go to [12]
7 g 3 < [9]  Additional stabilisation (0.1 < <0.4)
) 3 & [10]  Ifall constraints are satisfied, go to [12]
\_ =) g"?u [11]  Loop back to [9] for next spectral gap cycle

. [12]  Loop back to [4] for next CONMIN cycle
[13] Loop back to [3] for next sizing cycle
[14]  Final analysis

Fig. 1. VICONOPT sizing strategy, with additional features for spectral gap clearance in italics.
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Fig. 2. Clearance of natural frequencies @ from the spectral gap S =(f,, /).

Clearance of a spectral gap S = (f_,",f,,) requires the removal of any natural frequencies f;
for which £, < f; < f,» while ensuring that no other natural frequencies enter S. § is therefore

widened to § _(fL,jU) where f, = f, - ﬂ(jU 2 )s fu = fu+B(fy = f1), as illustrated in Fig.
2, with #=0.5 for the examples below. S is Llcarcd by imposing (at steps 3 and 5 of Fig. 1) the

constraints f; < f;, forall f, < f; < fy, f;> fy forall fy, < f; < fyy, where f), =(fp+ 1 )2
To establish whether S has been cleared, the W-W algorithm merely needs to check (at steps 6 and

8) that J(f,)=J(fy)-

In order to facilitate spectral gap clearance, during the first sizing cycle of Fig. 1 upper
bounds are placed on the move limits for each design variable (at step 4). Also, the mass of the best
feasible design found (at step 7) is permitted to exceed that of the initially stabilised design (step 2).

CONMIN (step 5 of Fig. 1) usually produces a design which fails to satisfy the fundamental
natural frequency constraint, but this is remedied by stabilisation (step 7). Steps 6 and 8 determine
whether the spectral gaps have been cleared. If not, additional ‘spectral gap cycles’ (steps 9-11) are
initiated. Here the stabilisation factor F' is successively increased (e.g. by increments of 0.05), until
either all the spectral gaps have been cleared or it is decided to abandon the CONMIN cycle, e.g.
because the panel mass is too high or too many natural frequencies remain in the spectral gaps.
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Fig. 3. Cross-sections of isotropic simply supported panels of length 1000 mm, Young’s
modulus 70 kNmm™, Poisson’s ratio 0.3 and density 2710 kgm™. All dimensions are in
mm. * denotes design variables, shown at their initial values.
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The stiffened panels of Fig. 3 were optimised subject to fundamental frequency and spectral
gap constraints, and the results are shown in Fig. 4. The results for panel A illustrate that natural
frequencies can move in either direction during CONMIN optimisation, although all were increased
during stabilisation. The single spectral gap was cleared by performing additional stabilisations in
each of two spectral gap cycles, but with a heavy mass penalty (which was removed in subsequent
sizing cycles). The results for panel B demonstrate successful clearance of all five spectral gaps for a
problem having several regions of high modal density.
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Fig. 4. Clearance of spectral gaps for panels A and B of Fig. 3, following: (I) initial analysis; (IS)
initial stabilisation; (C) a typical CONMIN optimisation during the first sizing cycle; (S) the
subsequent stabilisation; (A1/A2) additional stablisations in first/second spectral gap cycle; (S1/82)
end of first/second sizing cycle; (F) final analysis. Key: spectral gaps (including the region
excluded by the fundamental natural frequency constraint); e natural frequency; — panel mass.
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Corrected Solvability Conditions for Non-linear Asymmetric Vibrations of a Circular Plate

Revisited

W. K. Lee
School of Mechanical Engineering, Yeungnam University,
Gyongsan, 712-749, South Korea
H. D. Park
RMS Technology Co., Ltd.
Cheonan, 330-210, South Korea

This paper is intended to investigate further, responses of non-linear asymmetric vibrations of a perfect,
clamped circular plate studied by Yeo and Lee [1]. For a numerical example, they considered the case of
primary resonance, in which the frequency of excitation A is near one of natural frequencies, say, @,
where the first subscript refers to the number of nodal diameters and the second one the number of nodal
circles including the boundary. Then they derived a system of autonomous ordinary differential equations

with dimension four given as follows:

. [)I! - a
a, =-0,4, +2—smy” (1a)
1
b] I’ =-¢,, b, +2P“ sin #1h| (1b)
1
at. Vi 2 2 Pll a
anpy, =oaq, + a,(a;, +2b); y+——cos (1c)
4, 2w,
B! woonr Ylllil B2 424 F, b
J”,U.“ —0'||+4 "'n( 1|+ a“)+2 Cos i, , (1d}

1 1
where a,,,b, and ;11",.;;,”, denote amplitude and phase variables, respectively. Parameters ¢,,, F},,0
and 3,,,, denote damping coefficient, excitation amplitude, external detuning and nonlinear coefficient,
respectively. Each equilibrium solution (a/, = b/, = 1, = u/,’ = 0) corresponds to a steady-state response
of the plate. We can write the steady-state response to the first order approximation as
w= ¢, (r){a, cos(At — u, + 0 +1,) +b, cos(U— u, —0—1,) +0(&), (2)

where the forced response w is a superposition of the two traveling waves rotating clockwise and

counterclockwise, respectively, ¢,(r) is the linear shape function corresponding to @, and & is a small
parameter introduced for the perturbation analysis [1]. When a,, = b, and &, = !, form (2) is reduced

to a standing wave [1].
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It is found that there exist at most five stable responses: one standing wave and four traveling waves. Two
of traveling waves lose their stability by Hopf bifurcations and have a sequence of period-doubling
bifurcations leading to chaos. We consider the case of {v.&, ec,e0,€F,,7,,, }={1/3, 0.001067, 0.01,
0.13278, 4, -772.046}, when the system has five attractors: three equilibrium solutions (one standing wave
and two traveling waves) and two strange attractors (chaotic motions). Then the asymptotic behavior of the
system depends on the initial condition. A set of initial states, the so-called domains of attraction, is attracted
to one of attractors. The concept of the principal plane [2], which includes three equilibrium points of the
system corresponding to one stable standing wave and two unstable traveling waves, is used to obtain the
domains of attraction shown in Fig. 1. This figure shows the five domains of attraction represented by SS2
(standing wave), ST1-1, ST1-2 (two traveling waves) and UT2-1, UT2-2 (two chaotic motions), each of which
is to attracted to each of five attractors. In order to examine more closely the domain of attraction of one of
chaotic motions (UT2-1), we enlarge region Z4 to obtain Fig. 2. Consecutively enlarged results are shown in

Fig. 3 and Fig. 4, from which we can see that the basin boundary of the chaotic motion is fractal.

8 -

n,
Fig. 1 The domains of attraction in the principal plane. 'I, The stable fixed point for SS2; 2., the unstable
fixed point for UT2-1, 7, the unstable fixed point for UT2-2,

1.8

0.9

4.0 4.2 4.4
Ny

Fig. 2 The domains of attraction in the principal plane. The enlargement of Z4 in Fig. 1. A, The unstable
fixed point for UT2-1.
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1.68

1.60

3.96 4.02 4.08 4.14
n,

Fig. 3 The domains of attraction in the principal plane. The enlargement of Z5 in Fig. 2. A, The unstable

fixed point for UT2-1.

1.608

4.118 4,122 4,125 4.128

n,

Fig. 4 The domains of attraction in the principal plane. The enlargement of Z6 in Fig. 3.
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The Historical Bases of the Rayleigh and Ritz Methods

Arthur W, Leissa
Colorado State University
Fort Collins, Colorado USA

In 1877 the first edition of Theory of Sound by Lord Rayleigh [1] was published.
(See the Historical Introduction by Lindsay, in the 1945 reprinting, for an excellent
biographical sketch of Rayleigh and his work.) Volume 1 is devoted to vibration
concepts, and the underlying mathematics, and also contains six chapters dealing with
vibrations of strings, bars, beams, membranes, plates and shells. Volume 1I [2],
published one year later, addresses problems in acoustics.

Most of the numerous problems dealt with in Volume 1 begin with the governing
differential equation of motion, solving them by classical methods, and applying
boundary conditions to obtain free vibration frequencies and mode shapes. But Rayleigh
was also interested in the potential (¥) und kinetic (7) energies of the system and, in
some cases, attacked the problems from this perspective. In particular, in many cases, he
assumed a mode shape, and calculated the corresponding free vibration frequency by
equating ¥ and T during a vibration cycle. This has generally become known as the
Rayleigh method of solution. Its accuracy depends upon how closely the assumed mode
shape fits the correct (exact) one.

In 1908 and 1909 Walter Ritz [3, 4] published two papers which thoroughly
demonstrated a straightforward procedure for solving boundary value and eigenvalue
problems numerically, to any degree of exactitude desired, also using energy functionals.
For the free vibration eigenvalue problem, one assumes a displacement function in terms
of a series of admissible displacement functions (that is, ones satisfying at least the
geometric boundary conditions of the problem) having undetermined coefficients, and
then minimizes an energy functional involving V and 7 to determine frequencies and
mode shapes. The first paper [3] was extensive (61 pages), and laid out the method and
its underlying concepts, discussed convergence, and applied it to some problems. The
second one [4] used the method to present novel results for the vibrations of a completely
free square plate. Tragically, Ritz died of consumption soon afterwards (cf. [5]). His
complete scientific works were collected together and published posthumously [6].

Although the Rayleigh method is used frequently, the Ritz method has received
tremendous usage during the past three decades to obtain accurate frequencies and mode
shapes for the vibrations of continuous systems, especially for problems not amenable to
exact solution of the differential equations. This is especially because of the increasing
capability of digital computers to set up and solve the frequency determinants arising
with the method. Even before that, the writer found 15 publications that used the Ritz
method to solve classical rectangular plate vibration problems prior to 1966. These are
described in Chapter 4 of his plate vibration monograph [7].
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But in going through the 15 papers (as well as others, used elsewhere in the
monograph for other shapes of plates, or non-classical ones), the author became aware
that some researchers had also attached Rayleigh’s name to the Ritz method, calling it
“the Rayleigh-Ritz method”. At that time he regarded this as simply a way of
amalgamating the two methods, because the Rayleigh method may be regarded as a
special case of the Ritz method when only a single admissible function is used to describe
the vibration mode. But this is misleading, because then one would not bother to write
the Ritz minimizing equation — the Rayleigh procedure is more direct.

As time went on the writer heard comments more than once that Rayleigh had
used the Ritz method, and had written about it. But those who spoke could not cite
references, saying that “they must be in Theory of Sound” The writer has looked through
these volumes many times during the past forty years, and never found anything closely
resembling the Ritz method. However, recently he was made aware of some additional
published papers by Rayleigh, notably one [8] he published two years after Ritz’ second
paper, wherein he complained that Ritz had not recognized his own, similar work.

In the present work the methods of Rayleigh and Ritz are both briefly
summarized. Then Rayleigh’s 1911 paper [8] is studied in detail. Therein he said “---1
am surprised that Ritz should have regarded the method as new”. He then went on to say
that he had himself investigated the vibrations of the completely free square plate in a
manner similar to Ritz in his book [1] (Chapter 10, pages 372-383), and said also that he
had used the method to determine:

1. the velocity at the open end of an organ pipe: [2], Appendix A

2. the fundamental frequency of a vibrating string: [1], Sections 88-91

3. the fundamental frequency of a cantilever beam: [1], Section 182

4. the fundamental frequency of an almost-square membrane: [1],

Sections 209-210
5. acoustic resonance in a closed tube of variable cross-section: [2], Section 265
6. the fundamental sloshing frequency of a liquid in a rigid, circular cylindrical
container: [9]

The writer has looked carefully at these examples cited by Rayleigh. He has
recently gone through Rayleigh’s two volumes [1, 2], looking for other possibly relevant
examples, as well as another, earlier paper [10] on the square plate. Some of the above
examples cited by Rayleigh do not even use a minimization process. Some involve
minimization of a frequency (not a functional, as carried out by Ritz [3, 4]). That is, none
of them use Ritz" method. Detailed examinations of the examples cited by Rayleigh [8],
and a translation of the most important parts of Ritz’ papers [3, 4] are available in [11].

Thus, the writer concludes that Rayleigh’s name should not be attached to the Ritz
method; that is, the “Rayleigh-Ritz method” is an improper designation.
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For decades, the vibration analysis of shell structures has been an important research topic
due to their wide applications in structural, aerospace and mechanical engineering. One of the
most successful theories for plates and shells is based on the Kirchhoff-Love hypothesis, which
assumes that the thickness of the plate is very small compared to its shortest dimension.
However, as the shell thickness increases, the classical Kirchhoff-Love theory loses its validity
because of the transverse shear strain.  To accommodate this effect, the Reissner-Mindlin plate
theory, commonly used in thick plate analysis, has been extended to shell studies, which yields
linearly varying transverse shear strain in contrast to the constant distribution. Since then,

extensive research work has been conducted in the field.

Analytical solution to Reissner-Mindlin plates and shells is certainly valuable for basic
understanding of dynamics of plate and shell structures. Unfortunately, exact solutions are
scarce and limited to structures of simple geometries and support conditions. As a
consequence, numerical solutions of Reissner-Mindlin plates and shells are indispensable for
engineering prediction and design.  There has been much achieved in computational
methodology for shell analysis in the past two decades.  Based on the Ritz extremum energy
approach, a numerical procedure with geometrically compliant shape functions has been
developed by Lim and his associates to solve the vibratory characteristics of thick shallow shells
[1] subject to a variety of boundary constraints.  Using this approach, shape functions are
formed from the product of two-dimensional polynomials and appropriate basic functions which
ensure the satisfaction of piecewise boundary geometric conditions. This method avoids the
difficulty of global methods for implementing boundary conditions.  However, like other
standard global methods, this method fails to work for higher-order modes due to numerical
round-off errors when the degree of polynomial is increased to a certain level. Nevertheless, a
complete understanding of a number of very important engineering systems relies on accurate
predictive capabilities of high-frequency response. For instance, such understanding is of

crucial importance in aerospace structures, eg. aircraft, rotocrafts, satellites and other space
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vehicles. There is a pressing need for the prediction and control of the high frequency
vibration and noise levels at the structural design stage and this in turn requires the availability of

analysis methods that are able to predict the structural response [2].

Recently, the discrete singular convolution (DSC) algorithm [3] has emerged as a novel
approach for the computer realization of singular integrations. ~ The mathematical foundation
of the DSC algorithm is the theory of distributions and wavelet analysis. As wavelets are
localized in both frequency and coordinate domains, they give rise to numerical schemes with
optimal accuracy, stability and flexibility. More recently the DSC has also been introduced to
solve problems in structural mechanics for beams and plates.  In particular, it has been shown
that extremely high frequency vibration modes can be predicted very accurately by using the
DSC for plates with simply supported and clamped edges. However, as the governing
differential equation is discretized using a collocation approach in these analyses, further study is
required for the collocation approach to be applicable to problems involving free edge supports.

In light of the various problems outlined above, this work intends to develop a new
DSC-Ritz method which make use of DSC kemels of the Dirichlet type and the Ritz basic
boundary functions to arrive at a new approach which is not only able to accommodate a variety
of combinations of boundary conditions but also able to obtain accurate numerical solutions for
high-mode vibration frequency parameters of Mindlin plates and shells.  Moreover, the
present work introduces the DSC algorithm for the vibration analysis of shells with a variety of
possible boundary conditions.  Two typical DSC kernels, regularized Shannon wavelet kernel
and regularized de la Vallée Poussin kernel, are introduced to the DSC-Ritz scheme.
Extensive numerical experiments are conducted to validate the convergence and test the accuracy
of the proposed method. ~ Numerical results indicate that the new DSC-Ritz method provides
accurate prediction of thousands of vibration modes, which, in shell analysis, have been hitherto

unavailable to engineers.

A set of numerical studies is carried out for doubly-curved shells of square planform
(a/b = 1) and shallowness ratio &/ R, = 0.5 with two different boundary conditions: SSSS,
CCCC.  The curvature ratio R, /R, ranges from -2, -1 (negative Gaussian curvature
corresponding to a hyperbolic paraboloidal shell) to 1, 2 (positive Gaussian curvature
corresponding to a spherical shell). The Eh_iclfj_l_ciss ratio ranges from 0.02 (a thin shell) to 0.2

(a thick shell).  The first 500 mode frequencies are ];rgéhfe?dﬂi‘h-'fab'l_e 1. In the calculation,
de la Vallée Poussin kernel is adopted with a 32x32 grid.
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Table 1. Frequency parameter A =way/p/E for a thick doubly-curved shallow shell with
v=03, a/b=10 and b/R =05.

Boundary | » /p Mode sequence number
Condition S 1 10 50 100 [ 200 | 300 | 400 | 500

-2 0.55064 | 2.5102 | 7.5546 | 11.905 | 17.864 | 21.317 | 23.959 | 26.475

(-1) |0.56587 | 2.5147 | 7.5543 | 11.906 | 17.864 | 21.314 | 23.958 | 26471
SSSS X
(T) [0.59448 | 25216 | 7.5723 | 11.910 | 17.858 | 21.328 | 23.965 | 26.471

2 0.56666 | 2.5137 | 7.5662 | 11.904 | 17.861 | 21.325 | 23.963 | 26.474

-2 1.0802 | 3.7695 | 9.6106 | 13.523 | 19.658 | 22.948 | 25.637 | 28.101
-1 1.1248 | 3.7683 | 9.6136 | 13.518 | 19.654 | 22.948 | 25.637 | 28.093
CECE
1 1.2101 | 3.8162 | 9.6236 | 13.542 [ 19.657 | 22.953 | 25.644 | 28.118

2 1.1256 | 3.7936 | 9.6161 | 13.537 | 19.659 | 22.949 | 25.640 | 28.114

With the new capability of predicting high-frequency parameters, the new DSC-Ritz gives us
the privilege to reveal an important limitation of a formal analytical relationship [4] which
converts frequency parameters of a Kirchhoff plate into those of a Mindlin plate.  The present
finding indicates that a family of shear deformable vibration modes in the Mindlin plate could be
missing if the prediction is solely based on the relationship with the vibration modes computed

from the Kirchhoff plate.
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Introduction

Oscillation properties of delaminated structures are governed by strongly nonlinear phenom-
ena, which are associated with two major mechanisms, namely the presence of a unilateral
constraint across the interface of the debonded zone and dissipative impact-like contacts in
this region. Therefore, damage mechanisms will produce local sources of nonlinearity in a
predominantly linear structure, that are detectable on a global basis [1]. Investigations of
the arising nonlinear response, as will be addressed, are promising for reliable localisation of
the involved delamination. As a general conclusion, it was found that a consideration of the
damage-related nonlinearity is much more sensitive to structural alterations than any other
method based on the investigation of linear system properties (e.g. modal characteristics [2]).

Delaminated Beam

The model problem for non-destructive damage analysis is a straight laminate beam with a
distinct debonded zone. Harmonic resonant vibrations are induced at one end of the beam. In
the stationary state of motion, the gap between both separated parts of the beam opens and
closes. In the following, a delaminated beam as depicted in figure 1 is investigated by different
mechanical models of increased complexity to obtain insight into the nonlinear oscillation
behaviour of damaged structures. The outlined experimental investigations will provide both
a possibility of judging the quality of the numerical models and the basis for the following
damage identification procedure.
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Figure 1: Delaminated beam with symmetric damage scenario.

Minimal Mechanical Models

The present major task, with a view to the damage identification, is the isolation of the pre-
dominant damage-related oscillation phenomena - the fingerprint of the flaw - and to prove
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the robustness of these phenomena. Therefore, the investigation starts with two non-smooth
rigid body models that allow the capturing of the most conspicuous effects. The dynamic
contact-impact problem has as the simplest approximation two neighbouring linear oscillators
(see figure 2 [a]). It is well known that externally excited vibro-impacting systems have no
unique solutions [3]. Depending on the system properties as well as the amplitude and fre-
quency of a harmonic excitation, a cascade of bifurcations up to chaotic motions may occur.
The essential point in this scenario is its dependency on the amount of energy dissipation at
each impact-like contact. Introducing a high contact dissipation according to the experiment,
only one-periodic (non-bifurcated) oscillations exist [4]. On the basis of this knowledge, the
distortion factor [1] can be employed to quantify the degree of response nonlinearity at each
oscillator. As a result, it was found that the responses of both subsystems bear noticeable
nonlinearity.

y =y sin(t)

, 3000 ‘
X 1200 " :
- ! F=F sin(Q!)l
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[b]
Figure 2: Minimal models: [a] 2 DOF model, [b] 4 DOF model.

A more detailed approach provides a 4 DOF beam model with lumped masses (see figure 2 [b]).
For this purpose, two intact regions are added in regard to the afore considered system. The
extended model additionally reveals the penetrative character of the local source of nonlinearity
to all responses, even in the undamaged region. Finding the fingerprint of the damage on nearly
arbitrary test points provides the key for the development of global methods (on a system level)
for damage assessment.

Finite Element Model

Finally, a Finite Element model (fig. 3) is proposed that affords both a reliable prediction
of all predominant oscillation phenomena as well as a qualitatively and quantitatively correct
simulation of the system's response. For this purpose, the one-dimensional continuum problem
(fig. 1) is discretised by E ULER-B ERNOULLI beam elements. Supplying the time harmonic
excitation on the system with sufficiently large amplitude, coupling of the linear subsystems
(remaining beam and delaminated layer) in the debonded region occurs due to impact-like
contact events along the delamination. Two fundamental challenges appear: the appropriate
time integration in regard to the non-smooth nature of the problem and the reliable capture
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of the periodically appearing dynamic contacts within the stationary state of motion. The
conception of the node-to-node contact description via impact law in combination with a
penalty stiffness is adopted to tackle the special type of contact. The impact law mainly
involves the distinct contact dissipation while the latter helps to capture states of permanent
contact. This technique turns out to be very advantageous in regard to the robustness of the
simulation results.
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Figure 3: Finite Element model.

Inverse Analysis for Vibration-based Damage Identification

A nonlinear model-based approach for inverse damage identification can be established by
parametric updating of the Finite Element model. Therefore, an error function is needed to
control the iterative adaption of the damage scenario involved in the numerical model. Due
to the distinct damage-related sensitivity of the nonlinear structural response, an appropriate
error function shows great promise for overcoming the ill-posedness of the inverse problem
without any mathematical augmentation (i.e. regularisation). Due to the nonlinear nature of
the parameterised mapping the minimisation problem to be solved is, in general, non-convex
and may imply in the majority of cases that several minima occur. Thus, a special optimisation
technique with global character is required to overcome this difficulty and to achieve success
in inverse damage identification.
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1. Introduction  Experimental results are presented on chaotic oscillations of a thin annular plate
subjected to periodic acceleration. The plate is clamped at the internal boundary and is free along the
outer circumference. Chaotic responses are examined by using the Poincaré maps and the Lyapunov
exponents. The time responses on the multiple positions of the plate are inspected with principal
components obtained by the Karhunen-Loeve transformation.

2. Test Plate and Test Procedure As shown in Fig.1, a phosphor-bronze annular plate of thickness
h=0.23 mm is clamped at the inner boundary with the cylindrical block of diameter 2b=22.8mm. The
outer boundary of diameter 2a=115mm is free along the circumferential direction. The plate has initial
deformation with the form of an umbrella and the maximum deflection is close to the plate thickness.
The cylindrical coordinate-system is denoted by radial coordinate r, circumferential angle 6 and axial
coordinate z. In the experiment, the plate is shaken laterally with an electromagnetic exciter. The plate
is subjected to the gravitational acceleration g and the periodic acceleration a,cos2xf t, where fis the
exciting frequency and a, is the peak amplitude of acceleration. Dynamic responses of the plate are
measured with a laser displacement sensor and recorded for signal processing and data analysis. The
experiments were conducted as follows: first, the linear natural frequencies and the restoring force of
the annular plate are examined. Next, under periodic lateral acceleration, chaotic responses are
inspected with the frequency response curves, the Fourier spectra, the Poincaré projections and the
maximum Lyapunov exponents. Finally, detecting the chaotic responses at multiple positions of the
plate, mode contribution to the chaos is discussed with the principal component analysis.

3. Results and Discussion The results of the experiment are arranged with the following non-
dimensional notations.

E=rla,w=W/h,lps, pd=19 a, pa*!D,qs=Qsa?/ Dh,[w, 0] = [f, fil 20/ Qp,t=Qt (1)
where Q =a*2 /D/ph 1s the coefficient corresponding to lateral vibration of the plate. Notation
D=Eh3 ;{12(1+\;2)} is the bending rigidity of the plate, where E is Young's modulus and v is
Poisson's ratio. In Eq. (1), £ is the non-dimensional coordinate, w is the lateral displacement
normalized by the plate thickness h. Notations p_and p, are the non-dimensional load intensities
related to the gravitational acceleration g and the periodic peak acceleration a,, respectively. When the
restoring force of the plate is examined, static deflection under the static concentrated force Q, is
measured. Notation ¢, is the non-dimensional force. Notations @ and 7 are the nondimensional
exciting frequency and the time, respectively. Non-dimensional exciting force is expressed as
PP COSWT.

Figure 2 shows the static deflection w of the plate under the concentrated force ¢, loaded at £&=0.92
and 6=0. The deflections at £=0.76, 0=0 and £=0.76, O=x are detected, which are indicated by a solid
line and a dotted line, respectively. When the force increases from the stable equilibrium position to
the positive z direction, the plate deflection at £=0.76, 6=0 shows the characteristics of a hardening
spring. The deflection at the opposite side 6=, turns to the negative direction. As the force is loaded
to the negative z direction, the spring characteristics at =0 change to the softening-and-hardening
type. The deflection at f=m increases towards the positive direction at first, then turns back to the
negative direction and finally returns to the positive direction. These complicated movement is due to
the spring characteristics of softening-and-hardening type. Table 1 shows the linear natural
frequencies w, where i denotes the number of nodal diameter. In the table, the lowest natural frequency
@,=3.55 of the mode with one nodal diameter is close to the natural frequency @,=4.09 of the mode
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with zero nodal diameter. The natural frequency @,=8.95 of the mode with two nodal diameters is
close to twice the frequency @,=4.09. These relations imply possibilities of the existence of internal
resonance.

Nonlinear response curves of the plate are presented in Fig. 3. The amplitude of response at the
position £=0.76, 6=0 is shown with the root mean square value. A chaotic response is denoted with the
symbol C(i, p), where index i represents a generated mode of vibration with the number of nodal
diameters i and index p is the type of resonance. For example, C(1, 1) and C(1, 1/2) denote the chaotic
responses of the mode of one nodal diameter generated from the principal resonance and from the
sub-harmonic resonance of 1/2 order, respectively. C(i, p: j, q) represents the chaotic response
involving the response of internal resonance. Non-stationary amplitude modulation is observed in a
lower exciting frequency range. The large amplitude response C(0,1:1,1) is generated from the
principal resonance both of the lowest and second modes of vibration. The nonlinear response exhibits
the characteristics of a hardening spring. At the exciting frequency w=447, the time progress, the
Fourier spectrum and the Poincaré projection of the chaotic response C(0,1:1,1) are shown in Fig.4.
The time progress of the response w is presented by the number of excitation period .. Irregular
amplitude modulation of chaotic response is observed. In Fig. 4(b), broad band spectrum is observed.
Dominant peaks of the spectrum correspond to the lowest and the second mode of vibration. In Fig.
4(c), the Poincaré projection shows the distributed dots in the space of deflection and velocity. When
the exciting frequency increases to w=4.87, the response approaches the maximum amplitude which
was shown in Fig. 3. The time progress is prevailed by the periodic response, although chaotic
behavior exists. When the exciting frequency w=8.77 is close to the natural frequency w,, the chaotic
response involves the sub-harmonic components both of the lowest and second modes of vibration.
Because of the condition of internal resonance w,=2®, and ,=2w,, multiple modes are generated
simultaneously in the chaotic response. Figure 5 shows the maximum Lyapunov exponents A,
related to the embedding dimension e of the chaotic responses of C(0,1:1,1) at w=4.47 and ©w=4.87
and of the response C(0,1/2:1,1/2:2,1) at w=8.77. As the embedding dimension e increases, the
maximum Lyapunov exponents A, converges to positive constants, then these responses are
confirmed as chaos. In the chaotic response C(0,1:1,1) at w=4.47, the maximum Lyapunov exponents
takes from A_ =0.05 to A =0.09. When the frequency is w=4.87, the exponent decreases around
=002, because periodic components in the chaotic response are increased. For the response
C(0,1/2:1,1/2:2,1) at @=8.77, the amplitude is smaller than that of the chaotic response near the
principal resonance C(0,1:1,1). The maximum Lyapunov exponent takes a larger value from A, =0.2
to A__=0.3, because the amplitude of the chaotic response is within the range where the effects of the

max~ -

softening spring prevail.

The principal component analysis enables the estimation of the contribution of vibration modes to
the chaotic response of the annular plate. The chaotic time histories of deflection are detected
simultaneously at four positions of the plate. The positions are selected on the radius £=0.76 and the
angles 0=0, 71/2, 7w and 371/2. Applying the principal component analysis to the data with length 4500 T,
of the chaotic response of C(0,1:1,1) at w=4.47, the contribution ratio and decomposed modal pattern
are shown in Fig. 6. The mode with zero nodal diameter has the largest contribution ratio u,=44.1%.
The second and third larger contribution ratios of 1,=29.6% and ©,=19.6% correspond to the modes
with one nodal diameter. These modes have different angular orientation. The nodal lines are
perpendicular to each other. The mode with two nodal diameters has smaller contribution ratio of
1,=6.6%. Figure 7 shows the decomposed modal pattern related to the contribution ratio y, in the
chaotic response. In the figure, the modal pattern is denoted by open circles calculated with the time
data of length 4500 .. The bold solid line represents the modal configuration constructed from the
modal pattern by the least square method. In Fig. 7(a), the modal configuration of the zero nodal
diameter indicates one side vibration at the position #=0. Figure 7(b) and 7(c) correspond to the mode
with one nodal diameter. These modes have phase difference of 71/2 along the circumference with each
other. Figure 7(d) indicates the mode of two nodal diameters. To investigate the existence of a
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traveling wave in the chaotic response, the principal components are calculated in the short interval 50
7,. In the figure, thin lines indicate the modal configuration with short time duration. Irregular
movement appears in the modes with zero and one nodal diameter. For the mode with zero nodal
diameter, the modal configuration is almost fixed along the circumference. On the contrary, the mode
with one nodal diameter travels drastically in the circumferential direction.

4. Conclusion  The experiments are conducted on the annular plate with the initial deflection
subjected to periodic excitation. The chaotic response is generated involving the internal resonance.
The most significant modes that contribute to the chaos are the vibration modes with zero and one
nodal diameter. Principal component analysis with the short time duration shows that: the mode with
one nodal diameter travels violently in the circumferential direction. Two modes with one nodal
diameter of different angular orientation coexists in the chaotic oscillation.
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1. Introduction

With the requirements for higher performance and lower operational cost, more composites are
targeted toward structural applications in aerospace, marine and automobile engineering. Composite
materials are mainly preferred in such applications because of their advanced elastic properties and
tailoring capability, and have the potential for incorporating recent optimum design techniques into the
design process. Among various relating problems, vibration design of laminated plates is one of the
technically important problems, since vibration may cause serious fatigue damage to the composite
structure.

This paper reviews the development of optimization techniques and applications to laminated
composite plates in the past two decades. The recent progress made on a layerwise optimization (LO)
approach is summarized, and a heuristic optimum approach is introduced to search for the globally
optimum solutions in numerical experiments. The validity of the LO approach is demonstrated by
comparing the optimum vibration frequencies with the global solutions determined by the heuristic
optimum approach.

2. Problem Description and Optimization Approaches
2.1 Laminated plates considered

Consider a symmetrically laminated rectangular plate of dJmcnsmns axb with thickness h. The
direction of the fibers and the transverse direction to the fibers are denoted by L and 7, respectively, and
the fiber orientation angle between the x and L axes is denoted by €. Each layer is considered to be
macroscopically orthotropic and the total number of symmetric layers is defined as 2K. The differential
equation of equilibrium for such plates in free vibration state may be expressed as

4 4 4 4
D,,zr—‘ﬁ 4D,,§%y—+ 2(D,, + 20“}652;;, +4Ds ;‘; + Dy ‘gy - pa*w=0 1)

where w is the amplitude of the mid-plane, Dj (ij=1,2,6) are the bending stiffness and p is an average
mass per unitarea. A radian frequency « is rewritten in the dimensionless frequency parameter

:”@-—. wd*(p/D,)"* , with D, = Eph* /12(1-v,pvy, ) (reference bending rigidity) 2)
which is used as the object function to be maximized in the present problem.
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2.2 Layerwise optimization (LO) appreach
The design variables are taken to be a set of fiber orientation angles [0,/ 6,/.../8y/.../ 8k]s in the K
layers, where 6 is the fiber orientation angle in the k th layer (/=1:outermost, &=K: innermost) and the
subscript “s” denotes symmetric lamination. The optimization problem is written in the standard form as
Find [6,/64/.../6k]s, which maximizes Q (frequency parameter)
subject to constraints —90° <6< 90°(k=1,2,...,K) (3)

In the LO approach, use of a simple physical observation “In the bending of plates, the outer layer has a
greater stiffening effect than the inner layer and therefore has a greater influence on the frequencies™ is
made and the following assumption to the problem is advocated:

The optimum stacking sequence [01/8/. . ./0k]s opi fOr the maximum vibration frequency of

a laminated plate can be obtained by determining the optimum fiber angle for each layer

sequentially in the order from the outermost to the innermost layer.
An algorithm is made from the above assumption and a set of layerwise steps 1-K (K is the same as the
number of layers) is applied as one cycle in an iterative procedure. In the first cycle, the inner layers are
assumed to have zero stiffness, and the fiber orientation angles determined at Step X in the first cycle, i.e.
[61/8y/.../8k]s opt, are considered as a better initial approximation for the second cycle of Steps 1-K. The
iterative cycles thus continue until a converged solution is obtained.

2.3 Heuristic global optimization approach

In optimization of laminated composites, it is known that a great number of nearly optimum solutions
exist close to the global optimum. The conventional optimization methods that seek for only one
optimum solution tend to be trapped in local solutions and may lose many nearly optimum solutions that
are almost equivalent to the global solution. A basic approach for the global solution is to calculate the
vibration frequencies corresponding to all the combinations of discrete fiber orientation angles, but this of
course ends up with huge number of combinations. For example, when one gets 36 discrete fiber angles
with an increment of 5 degree for -90°=0=90° in one layer of symmetric 8-layer plates, this yields
36'=1679616 combinations that require vast computation time for vibration analysis.

A new computation technique is proposed here to remedy this situation by using the physically based
branch and bound approach. The idea is partly based on the layerwise optimization in that very rough
increments are used for fiber orientation angles in the inner layers while fine increments are used in the
outer layers. Figure 1 presents an example of normalized distribution of fundamental frequencies.versus
reduced 20736 combinations of lay-ups for 8-layer square plates with SSSC boundary conditions. The
next process is to limit the search band to the narrow band where the global solution apparently exists.
This process is continued to pin down only one global solution with other nearly optimums.

3. Results and Discussions

The elastic constants used in the examples are taken for Graphite/epoxy as Ei= 138 GPa, Er=8.96
GPa, Gi1=7.1 GPa and vi1=0.30. The frequencies were calculated by using the Ritz method to make
use of its short computation time.  The design variables are presented in the notation as [0,/62/65/04]s.
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Fig.1 Normalized distribution of fundamental frequencies of an 8-layer square plate.

Table 1 presents the highest ten fundamental frequencies for the 8-layer plates obtained by the
heuristic approach, where the results for square SCFF (a/b=1) and rectangular SSCF (a/b=2) plates are
given in (a) and (b), respectively. These two cases are chosen because the optimum fiber orientation
angles are not evident by the physical reason from the edge constraints, being different from cases such as
[04]s ot for CFCF plate. For SCFF square plate in (a), the LO solution (given in a frame) is listed in the
second place among 36° combinations and virtually there is no difference between the first solution
(global optimum) and the LO solution. The difference of the first and tenth frequencies is less than
0.004 %. In (b), when one of the worst cases is given, the LO solution is lower than the tenth solution,
but still the difference between the first and the LO solution is less than 0.1 %. Thus the LO approach
gives remarkably accurate solutions to the global optimum in 36* combinations, and advantage is obvious
when one considers considerably short computation time of the LO approach.

Table 1 The highest 20 frequency solutions and the LO solution of symmetric 8-layer plates.

(a) SCFF (a/b=1) (b) SSCF (a/b=2)
rank [< [8,/8,/85/0]0s rank = 0 [8,/6:/8:/80s
1 16.403 [70/-45/65/70]s 64.896 [-10/-10/25/-10]s

1
2 16.403 [70/-45/70/65]s 2 64.895 [-10/-10/25/-5]s
LO sol, 16.403 [70/-45/70/65]s a 64.804 [-10/-10/25/-15]s
3 16.402 [70/-45/70/70]s 4 64.803 [-10/-10/20/20]s
L) 16.402 [70/-45/65/65]s 5 64.803 [-10/-10/25/0]s
5 16.401 [70/-45/70/60]s ] 64.893 [-10/-10/20/21s
] 16.399 [70/-45/65/175]s 7 64.892 [-10/-10/20/15]s
7 16.399 [70/-45/70/75]s ] 64.891 [-10/-10/20/30]s
8 16.999 [70/-45/65/60]s 2 64.891 [-10/-10/25/5]s
9 16.398 [70/-45/65/80]s 10 64.891 [-10/-10/20/-5]s

10 16.396 [70/-45/70/80]s |LO sol. 64.842 [-10/0/-5/25]s
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We present a dynamic analysis and simulation of an electrically actuated clamped-clamped microbeam under
primary-resonance excitations, Figure 1. The dynamics are governed by a nonlinear integral partial-differential
equation and associated boundary conditions. We use the Galerkin procedure to reduce the problem to a finite-
number of nonlinearly coupled ordinary-differential equations. We nse this reduced-order model to simulate the local
and global dynamic behavior of the resonators using a combination of a sheoting technique and long-time integrations
to predict periodic motions and their bifurcations. We use this analysis to investigate the dynamic pull-in instability
and show three scenarios and mechanisms for its occurrence. The dynamic pull-in can oceur through a saddle-node
bifurcation, a period-doubling bifurcation, or homoelinic tangling, depending on factors such as the initial conditions
of the device and the level and frequency of the electrostatic force.

The nondimensional equation of motion and boundary conditions that govern the transverse deflection of the
microbeam can be expressed as

Pw  Pw  dw b aw\? w a2 [Voe + Vac cos(0t))?
ozt T o T “a _[nl./; (55) BN 5 (1-w)? W
dw du
w00 =w(l,)=0 ad 220, =F5(01,0=0 @)

where z, t, and w are the nondimensional position, time, and transverse deflection, respectively. They are related to
the dimensional variables (denoted by hats) as

W # ¢
wED TP T ®)

where T' = -‘-’-’% and £ is the microbeam length.

Vo J : ]
i
Vaceos(Qan) 4
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Figure 1: A schematic of an electrically actuated microbeam.

o
=

The parameters appearing in equation (1) are

aet = N Ged?
“= BT “‘_ﬁ(ﬁ) » N=Tr 2= g )

where A and I are the area and moment of inertia of the cross-section, F is Young's modulus, N is an applied tensile
axial force, p is the material density, h is the microbeam thickness, d is the capacitor gap width, and e is the dielectric
constant of the gap medium.

Next, we generate a reduced-order model by discretizing equations (1) and (2) into a finite-degree-of-freedom
system using the linear undamped mode shapes of the straight microbeam as basis functions. Thus, we express the

deflection as
M

w(z, t) =Y wi(t)pi(z) (5)
=1
We multiply equation (1) by (1 — w)?, substitute equations (5) into the resulting equation, multiply the result by
¢n(x), integrate the outcome from = = 0 to 1, and obtain a system of M nonlinearly coupled second-order ordinary-
differential equations in time describing the dynamic behavior of an electrically actuated microbeam. We found that
using three or more modes gives good convergence for the stable equilibria.
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Figure 3: Frequency-response curves showing the onset of the dynamic pull-in.

We show in Figure 2 the equilibria of a microbeam under DC loading when £ = 510um, h = 1.5pm, b = 100pm,
d = 1.18pm, and the nondimensional axial load N = 8.7. Figure 2 shows variation of the microbeam mid-point
deflection Wagas with the DC voltage. The stable (lower) branch and the unstable (upper) branch collide in a saddle-
node bifurcation at the static pull-in instability Vpe = 4.8V, resulting in the destruction of both branches. This
static analysis shows that MEMS resonators should be designed to operate below this value to ensure stability.

Next, we simulate the dynamic behavior of a microbeam under an AC harmonic excitation in addition to the DC
bias. Figure 3 shows variation of Wasaz with © when Vpe = 2V, Vag = 0.1V, and a quality factor @ = 1000. The
solid curves denote stable branches and the dashed curves denote unstable branches. The dynamic pull-in instability
is characterized by a slope approaching infinity, where a Flogquet multiplier approaches unity. We note from the figure
that the dynamic pull-in corresponds to a saddle-node bifurcation at 02 = 24.4857, where a stable branch collides with
an unstable branch leading to their destruction. Therefore, if the frequency of excitation is swept from low values to
beyond the above value, so that the response follows the upper stable branch, the system will go to pull-in.

Figure 3 shows another saddle-node bifurcation at Q0 =~ 24.2917, where also a Floquet multiplier approaches
unity. This bifurcation can lead to undesirable phenomena, such as jumps and hysteresis, in devices like resonant
microsensors. If the solution jumps from the lower branch it either goes directly to pull-in or settles down on the
upper stable branch corresponding to a stable periodic motion of larger amplitude. This depends on the transient
dynamics of the system, which in turns depend on several factors, such as the sweeping rate of §2, the ramping rate
of Vac, and any external disturbances in the system. In Figures 4a and 4b, we show time-history evolutions for a
point that is initially close to the lower saddle-node bifurcation of Figure 3 (Q = 24.2917, Wataz = 0.23). In Figure
4a, 11 = 0.2; and in Figure 4b, 17 = 0.23.

Next, we describe another pull-in scenario. The time-history evolution in Figure 5a shows that dynamic pull-in
occurs below Vae = 0.2819V, resulting from a saddle-node bifurcation. In this case, the dynamic pull-in occurs when
the stable periodic orbit around the stable equilibrium collides with the saddle (the unstable equilibrium solution at
Waraz ~ 0.01) and its stable manifold. Figure 5b is generated from the same data of Figure 5a except that the sign
of one of the initial condition states is changed from positive to negative. We note that the motion is stable, which
indicates a fractal dynamical behavior that is sensitive to initial conditions.
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Figure 4: Long-time integration results for the lower saddle-node bifurcation of Figure 3 and two different
initial velocities.

(a) Time history. (b) Phase portrait.

Figure 5: Long-time integration results showing the onset of dynamic pull-in.
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Vibration of an Atomising Disc Subjected to Growing Distributed Mass
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Discs are a basic mechanical element commonly found in engineering. Examples are plentiful and
include computer discs, circular saws, disc brakes, and so on. Frequently these discs are subjected to
loading that moves relative to the discs and are treated as moving-load problems.

Mote [1] studied the vibration of a stationary disc subjected to a simple, point-wise rotating load.
Iwan and Moeller [2] studied the vibration of a spinning disc subjected to a simple, point-wise
stationary load. Since then, a large number of papers have been published on disc vibration excited
by moving loads, which was reviewed by Mottershead [3]. Two types of moving-load problems
have received much attention. They are the computer disc problem [4] and the wood saw problem
[5]. In addition, Ouyang et al. [6] tackled disc brake vibration and squeal as a moving-load problem.

The vibration of atomising discs has not been studied in the open literature. This paper appears to be
the first attempt to investigate this important problem. The centrifugal atomisation device at
Liverpool generates large-amplitude vibration and creates a safety concern. The high-frequency
vibration is also likely to cause premature fatigue failure.

A schematic view of centrifugal atomisation at Liverpool is shown in Figure 1 (adapted from [7]).

inlet
[ ] | 1 casing

liquid metal

0 0 O sl Faan O 0 0

atomising disc

Figure 1. Schematic of powder production using atomising disc

droplets

The liquid metal stream flows down from an inlet and drops onto the surface of a flat metal
(atomising) disc that is spinning at very high speed. Due to the centrifugal force acting on it, the
liquid metal stream is broken into a spray of metal droplets that fly off the disc and become powder
particles when cooled. This is an efficient way of producing high quality powder. As the molten
metal descends on to the disc, it cools down and part of it gradually solidifies prematurely and
accumulates on the disc. As the process goes on, more solid metal accumulates and forms a ‘skull’
on the disc. The skull hinders the flow of the metal stream and the flight of metal droplets as a
barrier and thus reduces yield of powder and also produces unwanted vibration due to the
imbalance. From the point of view of dynamics, the whole system has a time-dependent moving
mass (growing mass). This paper studies the simple case of axially symmetrical mass distribution
that grows and moves, which bears some resemblance to (but are more complicated than) the
problem of a disc subjected to a radially moving load studied by Huang and Chiou [8].

As a first study conducted on the vibration of atomising discs, a number of rather restrictive
assumptions have to be made. (1) The effect of temperature variation in the metal flow and in the
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disc itself is not considered. (2) There is no thermal and mechanical coupling. (3) The shape and the
rate of the metal flow are known a priori and are not influenced by the disc vibration. This latter
assumption is probably not very true but the fact is not known yet. (4) The metal flow on the disc is
axial-symmetrical. This assumption is largely true. However, a slight deviation from axial symmetry
will result in extra excitation and further mathematical complication, which will be considered in the
next investigation. (5) The metal flow on the disc provides only inertia, but no stiffness or damping
to the system. (6) The disc vibration is initiated by the liquid metal descending onto the disc as an
impact. (7) The disc is modelled as a flat, annular, thin (Kirchoff) plate of equal thickness with
clamp-free boundaries. By removing any of the above assumptions, the system becomes more
representative of reality but increasingly complex. In so doing a series of investigations of
increasing sophistication can be made in future.

The dynamic model of the system is shown in figure 2.
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Figure 2. Dynamics model of the atomising disc

The equation of motion of the above-mentioned disc (with centrifugal force) cast in the space-fixed
cylindrical coordinate system, is [2]

a'w ow , 0w i 0 ow o, 0°w
1(——+202 + 02— )+ DV w—h—-(ro, —)-h—L— = p(rt 1
op a0 20? rar O o) T g = PR )

In the region where the metal stream is present on the disc surface, the distributed inertial load is
2 ; - . -
— pa(rh, (r.r)?a—?, where p, is the density of the metal stream on the disc. Hence
t

o’w
P a<r<r,/(t)

plr.t) = = pu(rh (r,1)
0 () <r<b

(2)

and the in-plane stresses due to the centrifugal force are [2, 4]

l d
o‘r(Jr')=a',+:"—§+a’3r2 o',,zd1—r—§+d4r2

(3)
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Suppose that the formation (the height 4, and radius r, of the profile) of the metal stream on the

disc surface is known. This information may be obtained through measurement, or through
computer simulation as done by Ho and Zhao [7]. Then the distributed load p can be determined.

The solution of equation (1) can be written as
Wr0.0= 3. $4,,(04,,0), 4,(0)=R,(rexp(ind) (4)

and the ‘radial mode’ is [9]

an {}") = (ff + bﬂm r+ (i ;'2 )(I' _ a)!rnz (S)

where the coefficients a,,, b,, and c,, can be determined at the free boundary of the disc where the
shear force and the bending moment vanish, and from the normalisation condition [9].

Multiplying equation (1) after substituting equations (2) and (4) into it with g, (r.6)
(k=0,1,2,..;1=0,-1,1,-2,2,...) and then integrate the resultant equation over the disc area
(Galerkin’s method) yields a system of simultancous second-order differential equations of the
complex-valued modal coordinates g, (r) with time-dependent coefficients for the mass term. There
is no closed-form solution for these complicated equations in general. Therefore numerical methods
must be used to solve these equations. A fourth-order Runge-Kutta algorithm is developed to
conduct numerical integration of these equations in the time-domain. From the numerical solutions,
the influence of the metal flow and disc speed on the vibration of the disc can be determined. A
numerical example of a real atomising disc is analysed. It is found from the numerical solutions that
due to the radially growing mass the vibration of the system is non-stationary with multiple
frequencies that decrease as time goes by and can exhibit flutter,
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Modal Properties of Planetary Gears with an Elastic
Continuum Ring Gear
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Planetary gears (Figure 1) are widely used in automotive and aerospace transmissions due to
advantages such as compactness, high torque/weight ratio, low bearing load and high transmission
ratio. Although planetary gears have a reputation of being quieter than parallel axis systems, their
noise and vibration remain a key concern,

The elastic continuum vibration of the ring gear as shown in Figure 1 is significant for many
practical applications of planetary gears, especially in aircraft engine, rotorcraft, and automotive
applications [1]. Weight is a paramount concern in these systems, and use of thin ring gears
maximizes the torque/weight ratio. Ring flexibility also introduces compliance that improves load
sharing among the separate planet load paths and improves tolerance to manufacturing errors. In the
limited literature on planetary gear dynamics, however, the analytical models use exclusively
discrete models for all components in the planetary gear (sun, planets, carrier, and ring) [2, 3]. In
such models each component is a rigid body with up to three planar degrees of freedom.

The present work adopts a continuum ring gear vibration model represented as a partial
differential equation while all other components are modeled as discrete rigid bodies. Analytical
study of this expanded hybrid discrete-continuous model shows that the modal properties and
natural frequency spectrum are highly structured. All vibration modes are classified into one of four
types according to their unique characteristics. The well-defined properties and natural frequency
multiplicity of each mode type are proved analytically.

The discrete-continuous model of a planetary gear is shown in Figure 1. All gear meshes are
represented by linear springs. The sun, carrier and planets are considered as rigid bodies, while the
ring gear is modeled as a thin, inextensible, elastic ring. The bearings and supports of all bodies are
modeled as linear stiffnesses. The planets are identical and equally spaced. All ring-planet mesh
stiffnesses are equal, and all sun-planet mesh stiffnesses are equal. w(@,r) is the tangential

displacement of the ring, which is separated into the elastic deformation v(#.r) and the rigid body
motion p_=(x,y.u )'. The translations and rotations of the sun and carrier are
P, =(.'ti,_v1,u‘}T,j:s,c, and the deflections of the planets p =(&,n,u ), n=1---,Nare

described by radial and tangential coordinates.
The dimensionless equation of motion for the ring gear is

N
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S =-xsiny, +ycosy, +u +& sina —n cosa, —u, (3)

The equations of motion for the discrete elements are omitted for brevity. Coupling between the
elastic ring vibration, rigid body ring vibration, and planet motions is evident in the last term of (1).
To provide mathematical structure, the displacement of the whole system is separated into two
parts: v(@,t) and q(r). v is the elastic deformation of the ring gear and q is the vector of discrete
component motions of the sun, planets, carrier, and ring. These elements are formed into the

extended variable a = (v,q")" . With a(0.r) — a(0)e"™" , the extended operator eigenvalue problem is

2 v M{'v h-:refLI % LE L‘i v
—~w'Ma+Ka=0 a= , Ma= L Ka=| "~ ' (4)
q Mq L, Kilq

where M and K are extended stiffness and inertia operators, M and K derive from the mass and
stiffness matrices for the discrete planetary gear model [2], and L, is a linear operator from the
space of v(#) to the space of q that, along with L, which is an operator from the space of q to the
space of v(#), captures the coupling between continuum and discrete vibrations. The extended

ww - . 1x N
operators are self-adjoint with the inner product <a .a, >=_[1 vv,d@+q,q,. This structure

simplifies use of analytical methods.

In order to find all natural frequencies and vibration modes of the elastic-discrete model using
perturbation analysis, two systems must be considered. In the first one, the unperturbed system is a
discrete planetary gear having a rigid ring gear. The stiffness of the ring is perturbed from infinite
to a finite number. The small quantity & is the ring bending compliance. The discrete model has
3N49 eigensolutions, where N is the number of planets, so only 3N+9 perturbed eigensolutions are
obtained. To find the remaining eigensolutions, we examine a system where the sun-planet-carrier
system is very stiff, and their displacements are small compared to the elastic ring deformation. The
unperturbed system is an elastic ring having multiple springs representing the ring-planet gear
meshes, and the perturbation parameter is &=1/k . The eigensolutions from these two

perturbations form the complete set of eigensolutions of the elastic ring planetary gear system with
no redundancy. This process mathematically exposes the system’s highly structured modal
properties. The shortcoming is that there is an implicit assumption that the modal properties do not
change as the perturbation parameters cease to be small. While this assumption is confirmed in all
numerical results, the assumption is eliminated in an alternate approach.

The properties of all modes can be proven by first choosing a candidate mode guided by
numerical results and the perturbation analysis. Direct substitution into the discrete-continuous
eigenvalue problem and reduction of the results leads to reduced eigenvalue problems that confirm
the modal properties. This process is conducted for each of the four mode types. The modal
properties from this method and perturbation are identical. The candidate mode method places no
restriction on the size of any parameters.

Four types of modes exist, and this list is exhaustive ( j =1,2,... in all cases) (Figure 2):

e Rotational modes contain only the jN nodal diameter ring components. The sun, carrier and
ring rigid body motion have only rotational motion, and all planets have the same motion. The
natural frequencies are distinct.

e Translational modes contain only the jN +1 nodal diameter ring components. The sun, carrier
and ring rigid body motion have only translational motion; the planet motions are related by a
rotation transformation. These all occur in degenerate pairs of modes with equal natural
frequencies.

e Planet modes contain only the jN+s nodal diameter ring components, where

s=2,3,...,int(N/2) . The translation and rotation of the sun, carrier and ring rigid body motion
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are zero, and the deflection of any planet is proportional to the deflection of any other planet.
These occur in degenerate pairs of modes except for even N, where one mode has a distinct
natural frequency.

*  Ring modes contain only a single nodal diameter of ring vibration. The deflections of the sun,
carrier, and planets are zero. The natural frequencies are distinct.

With the ring gear deformation represented by a truncated Fourier series of J terms, the exact
number of each mode type can be determined. For odd number of planets N, the number of
rotational, translational, planet and ring modes are J+6, 4J+10, (2UN -6J)+ (3N -9)and J,

respectively. For even N, they are J +6, 4/ +10, (2JN —7J)+ (3N ~9) and 2, respectively.
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ABSTRACT

In the present paper the dynamic stability of circular cylindrical shells is investigated. Donnell’s Nonlinear Shallow
Shell and Sanders® Theories have been applied for numerical studies in order to evaluate the accuracy of methods. The
effect of a contained fluid on the stability and the postcritical behaviour is analyzed in detail. Chaotic dynamics of pre-
compressed shells is investigated by means of nonlinear time series techniques, extracting correlation dimension and
Lyapunov exponents. The effect of a seismic excitation on the base of the shell is analyzed experimentally and
numerically by means of a new model having mixed boundary conditions able to model the presence of a mass rigidly
fixed on the top of the shell.

1. INTRODUCTION

The development of aerospace vehicles requires deep studies on light-weight, thin-walled structures. A wide branch
of the technical literature in the past century was focussed on the analysis of thin-walled structures and tried to
investigate their behaviour in many different operating conditions: i.e. under static or dynamic loads, either in the
presence or absence of fluid-structure interaction. Both linear and nonlinear models have been developed to forecast the
response of the structure under different excitations. Many studies were concerned with cylindrical shell structures that
constitute main parts of aircraft, rockets, missiles and general aerospace structures.
The stability of thin circular cylindrical shells has been studied in an innovative way by Von Karman and Tsien [1] in
the last century. Vijayaraghavan and Evan-lwanowski [2] studied a parametrically excited shell both analytically and
experimentally. The dynamic stability and the longitudinal resonance of simply supported cylindrical shells under axial
load were analyzed by Koval [3]. Hsu [4], Nagai and Yamaki [5] developed models suitable for describing the
parametric instability of shells. Popov et al. [6] Gongalves and Del Prado [7, 8] analyzed the parametric instability of
infinitely long circular cylindrical shells under static and dynamic loads.
Koval’chuk and Krasnopol'skaya [9] introduced the effect of geometric imperfections. Pellicano and Amabili [10]
considered the dynamic behaviour of a cylindrical shell without imperfections: they outlined the fundamental role of
both asymmetric and axisymmetric modes to predict the nonlinear response of the structure. A review of studies on the
nonlinear dynamic stability and nonlinear vibrations of circular cylindrical shells is provided by Amabili and Paidoussis
[11]. In [12] a full report of a NATO project related to shells dynamics and stability with fluid structure interaction can
be found.
In the present work, the static and the dynamic behaviour of thin cylindrical shells is considered. Both Donnell’s
shallow-shell and Sanders’ theories are used: Galerkin projections and Lagrange equations are used respectively to
obtain a system of ordinary differential equations. Geomeltric imperfections are included in the model. The response of’
the system subjected to several kinds of loads is investigated: static and periodic axial external loads: seismic base
excitation and added mass. Continuation techniques are applied to obtain static and periodic solutions of ODE (ordinary
differential equations) varying one or more parameters of the system. Time histories and spectra of non-stationary
responses are obtained by using direct simulations. Experimental modal analysis has been performed on a shell
clamped-free having an added mass on the top.

2. GOVERNING EQUATIONS
A brief description of the Donnell Nonlinear Shallow Shell theory is given in the present section, Sanders’ theory is not
reported for the sake of brevity.
The equation of motion for flexural vibrations of a thin, circular cylindrical shell is given by
2 2 2 2 2 2 2
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with the compatibility equation
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where p = 1:;,!;3/[]2(] A )] is the flexural stiffness. £ the Young’s modulus, vthe Poisson ratio, /1 the shell thickness, R

the mean shell radius, o the mass density of the shell, ¢ the damping coefficient, 7 is the in-plane stress function, p is the
pressure acting on the shell surface due to the fluid-structure interaction and fis a distributed external load. Moreover,
simply supported boundary conditions are considered and the continuity in @ is imposed. The axial load is:
E’r(r) ==-N+N,coswr.

The radial displacement w is expanded by using the linear shell cigenmodes as bases; in particular, the flexural response

may be written as follows:
~| Nl

M
w(x,0,0)= " 3 [ A, (1) cOS (m,nO)+ B, , (1) sin(nm0)]sin(A, x)+ Y Ay, ,(0)sin(2,, , x), ()
ny=1m=| m=l

where A4 = m;r/l., ¢ is the time: A, (), B, (1) and A, (1) are unknown functions of ¢ and j= n, n. In the numerical
calculations, Ny and M will be assigned equal to 3 and 5, respectively. Expansion (3) is suggested by the presence of
quadratic and cubic nonlinearities.

A similar expansion has been performed in the case of Sanders’ theory; however. in this case both radial w and in-plane
u, v displacement fields have been expanded.

The shell is assumed to be empty or completely fluid-filled. An incompressible inviscid fluid is considered and the
effect of the dynamic pressure acting on the shell surface is linearized. The fluid velocity field can be described in terms
of the velocity potential @, where v = -V @ ,and g2 _2'® '@ 120 1 20 _

axt  art rér vt

0-

3. NUMERICAL RESULTS as i
A numerical analysis is performed on a test shell, studied in [6-8], having the o8 Donnell /
following characteristics: A = 2x10® m, R = 02 m, L = 04 m, £ = o a
2.1x10"N/m’, v= 0.3, p= 7850 keg/m’; in the case of fluid-filled shell, p=  **|
1000 kg/m’. The fundamental frequency of the empty shell is equal to 2 . 2l
nx503.7 rad/s and is obtained for m=1 and #=5. When the shell is excited by &
an axial periodic load, two kind of excitations are present on the modal i
equations: (/) a direct excitation of the axisymmetric modes due to the &
Poisson’s effect; (if) a parametric excitation of all modes. In Figure 1 the acs
principal instability region is presented for ¢=0.0008 and no axial preload: Ty T T e -
regions obtained with Donnell's nonlinear shallow shell and Sanders’ theories sy
are very close; the effect of imperfection (w|)_ / h=0.15) is a translation of the Figure 1. Prinlmpal_ '“S‘ﬂh“i‘)‘rrmgiﬂni_
instability boundary, without changing the minimum value of 7). ::;1;15312‘::2“1 reories and effect o
. 5 In Table 1 the effect of different
s Wise 1*_:?;; "?;}L ﬂ?:: L?II: %’- imperfections is summarized: the general
@) 5101 h h h h h N comment is that geometric imperfections
| 0 0 0 0 0 0.0038 are not quite effective on the parametric
(Donnell) instability; the only case where the
! 0 0 0 0 0 0.0035 influence is evident regards a big
0.99091 0.1 0 0 0.1 0.1 0.0033 imperfection (50% h) that gives rise to a
:}g;‘:g 0(-}' 06] 0{']' g: g: ggg;: growi_ng of the criti:::al dynamic_ load; this
103715 |03 i 01 0 5 0.0038 is mainly 'due to axial symmetric oul\-.vard
2001 o 05 0.5 05 0 0.0077 imperfections, thal_ make the shell stiffer.
104611 | <01 01 o1 01 01 0.004 Results presented in Table 1 are obtained
1.00975 0 0 0 01 0l 0.0037 by means of a two parametric
Table 1. Dynamic buckling: effect of imperfections. continuation, which allows for finding the

minimum dynamic load versus the excitation frequency.

In the case of axial preload, the parametric resonance can lead the structure to collapse, by jumping on buckled static
configuration; this is due to the static bifurcation nature, which is strongly sub-critical. Furthermore, in the case of axial
pre-compression, amplitude modulations and chaotic dynamics can appear. The analysis of strange attractors by means
of nonlinear time series techniques, show that the correlation dimension of the chaotic attractor is about 3.5; moreover, a
positive maximum Lyapunov exponent has been estimated, confirming the chaotic character of oscillation,

A numerical and experimental analysis has been performed on a PVC shell having the following characteristics: 4 =
0.3x10% m, R = 0.043 m, L = 0.09 m, E = 2.65x10°N/m*, v = 0.4, p= 1370 kg/m’; the shell is clamped on the base
and a mass is rigidly attached on the top, see figure 2. The fundamental mode is found experimentally at 92 Hz after a
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modal identification performed by means of LMS CADA-X, which allowed the determination of damping (0.85%) and
modal shape also, see Figure 3. The theoretical mode shape is shown in figure 4, which shows good agreement with
experiments: the first mode of such a shell is a beam-like mode; the theory of Sanders predicts that the fundamental
frequency is 89 Hz, i.c. very close to the experimental observation. Note that the shape of the fundamental mode is
strongly influenced by the mass on the top. Numerical simulations show that such a model can undergo dynamic
instability in the case of seismic excitation. Experimental validations will be performed in the next future.
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Figure 2. Experimental setup Figure 3. First mode (experimental ) Figure 4. First mode (theory)

CONCLUSIONS

The parametric instability and the posteritical behaviour of a circular cylindrical shell subjected to dynamic axial loads
are analysed. The Donnell’s nonlinear shallow-shell and Sanders” theories have been compared: both theories show that
the fluid gives a safety effect on the parametric instability and the geometric imperfection does not change the dynamic
critical load. Sanders’ theory has been applied to the case of a clamped free shell having an added mass on the top.
Linear analyses show good agreement between experiments and theory.
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Attention is focused on two-dimensional problems involving an elastica formulation. Beams,
columns, pipes, and loops are considered. They are assumed to be slender, inextensible, unshearable, and
elastic. In most cases the bending moment is assumed to be proportional to the curvature. The structures
are subjected to loads that produce large static deflections, sometimes after buckling. Small vibrations
about these equilibrium configurations are investigated.

The displacements are written as functions of the arc length along the structure and of time. At a
given point on the structure, the relevant variables are the coordinates, the rotation, the bending moment,
and the internal force components parallel to the two axes. The governing equations are two geometrical
relationships, the moment-curvature relationship, and dynamic equilibrium of moments and force
components. Transverse and axial inertias are included.

Both the equilibrium and vibration problems are boundary value problems, involving six first-
order differential equations within the span and usually three boundary conditions at each end. They are
solved as initial value problems, using a shooting method and the program Mathematica. The only
approximation in the solution technique is in the numerical integration procedure used in the subroutine
NDSolve in Mathematica. The unknown parameters (e.g., force components) and unknown boundary
values at the initial end are guessed and then varied until the known boundary conditions at the other end
are satisfied with sufficient accuracy.

This procedure yields the equilibrium shape first, and then vibration modes and frequencies for
small motions about this shape. Different modes are obtained by guessing the vibration frequency in
different ranges. In cases for which the solution involves complex vibration "frequencies," such as when
damping is present or sometimes when Coriolis forces are active, the numerical computations are
performed in complex form. In most of the problems, experiments are also carried out and their results
are compared with those of the analysis.

In the first problem, a flexible strip is attached at its ends to a substrate comprised of two rigid
plates connected with a hinge. One end of the strip is bonded to one of the plates, and the other end to
the other plate. Initially the plates are flat and the strip has an upward (buckled) deflection. The right
plate is rotated upward. This problem is motivated by an application of flexible electronic circuits in
automobiles and possible debonding at the contact points with the substrate. If the system is symmetric,
the strip contacts itself at a point when the rotation is sufficiently large. For an asymmetric system, as
the rotation is increased, the strip jumps to a shape having point contact with one of the plates and line
contact with the other. Even though the strip is inextensible, the second mode has no nodes [1].
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The second problem is somewhat similar. In this case the weight is included, and the strip lies
on a horizontal surface. Its ends are pushed together, causing the strip to buckle upward. The problem
has applications involving fabrics and textiles. The strip is called "long" if the buckled region does not
reach the pushed ends, and "short" if they do (i.c., there are no flat regions near the ends). As the ends
are pushed together, initially the buckled region is symmetric about its center. In most cases, there is a
bifurcation into a tilted stable equilibrium shape. Self-contact occurs at a certain value of end
shortening, depending on a dimensionless parameter related to the weight and bending stiffness of the
strip.  As the ends are pushed, the fundamental vibration frequency increases and then decreases,
reaching zero when bifurcation occurs. Cases of a heavy strip lying on an inclined or vertical surface
also are considered, with relevance to buckling of drillpipes.

Longitudinal self-weight is the only load in the third problem, in which the postbuckling of a
cantilevered column is examined. The critical height was determined by A. G. Greenhill in 1881. Here,
linearly-clastic and softening constitutive laws are considered, and the bifurcation may be supercritical
or subcritical. The effect of initial curvature is studied. For the softening material considered, which
corresponds to a curtain wire consisting of a helical steel core surrounded by a plastic covering, the
column suddenly jumps to a severely-drooped configuration as the length is increased past a certain
value [2].

In the fourth problem, one end of a cable is attached to the tip of a cantilever and the other end is
attached at or near the base. A turnbuckle within the cable is tightened. If the bottom end of the cable is
at the base, buckling occurs at a critical load; if it is offset from the base, the column deflects as soon as
the turnbuckle is tightened. Large deflections are computed, along with associated small vibrations [3].

Next, a thin strip is bent such that the two ends are brought together and clamped (pinched) to
form a teardrop shape. The clamped end is held at various angles, with the loop either upright,
horizontal, downward, or halfway between these positions. Self-weight provides the loading. The
length of the loop is increased. When the loop is held upright, in-plane buckling occurs at a critical
length. For the other orientations, except the hanging one, deflections also become large as the length is
increased [4].

The sixth problem involves fluid-conveying pipes with supported ends, which buckle when the
fluid velocity reaches a critical value. For higher velocities, the postbuckled equilibrium shape can be
directly related to that for a column under a follower end load. However, the corresponding vibration
frequencies are different due to the Coriolis force associated with the fluid flow. Clamped-clamped,
pinned-pinned, and clamped-pinned pipes are considered. Axial sliding is permitted at the downstream
end. The behavior is conservative in the prebuckling range and nonconservative in the postbuckling
range. In conjunction with this problem, related columns are studied, first with a concentrated follower
load at the axially-sliding end, and then with a distributed follower load. One case is particularly
interesting, in which a supercritical bifurcation point is followed by a limit point on the postbuckling
equilibrium path [5].

Finally, the use of slightly-buckled or pre-bent columns as vibration isolators is studied. The
columns are designed to have a high axial stiffness under the weight that they support, so that the static
displacement of the weight is not excessive, and then to have a low stiffness during excitation. The bases
of the columns are subjected to vertical motion which is simple harmonic or a linear combination of two
simple harmonic functions. The axial displacement transmissibility is computed, and the effects of
external and internal damping, column stiffness, supported weight, and initial curvature are investigated.
For the two-frequency excitation, the effects of the relative amplitudes and frequencies of the excitation
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components are determined. Columns with pinned ends and with clamped ends are treated. A single
column is considered first [6,7], and then a horizontal rigid bar supported by two columns is analyzed.
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Nonlinear interaction effects characterizing the internally resonant finite amplitude
dynamics of suspended cables have been a subject of considerable interest in the last fifteen years.
With respect to system modelling, the following main situations have been considered: (i)
horizontal and small sagged cables; (ii) condensed partial differential equations (PDEs) of planar
motion obtained by linking the system longitudinal displacement field to the transversal one; (iii)
low-order discretized models obtained from the PDEs of motion through an assumed mode
Galerkin technique.

In tumn, the solution of the ensuing ordinary differential equations (ODEs) has been
accomplished through combined and comparative use of asymptotic and numerical procedures,
which allowed the highlighting of many interesting nonlinear dynamic phenomena. At the same
time, a number of meaningful experimental results have been obtained, and some recent purely
numerical (finite difference based) investigations aimed at overcoming some of the above
mentioned assumptions have been accomplished [1]. A comprehensive and updated review of the
overall research activity on cable nonlinear dynamics has appeared very recently in the technical
literature [2, 3].

Moving from the state-of-the-art in the field and attempting also to establish a link between
analyses conducted in fairly different contexts [4], the present work deals, in principle, with the
general class of arbitrarily inclined, sagged, and extensible cables for which no a priori assumptions
are made as regards the order of displacement field components and the number of modes
significantly contributing to system dynamics. With the perspective of still working in a basically
analytical framework, which is deemed capable of enlightening the fundamental features of system
nonlinear dynamics, approximate equations of motion valid for relatively small values of the cable
sag-to-span ratio are considered, but a second-order asymptotic analysis of the ensuing approximate
ODEs of free motion, capable of accounting for contributions from higher-order modes, is
accomplished. In the background, as useful comparison elements for the analytical outcomes,
“exact” numerical results of the original PDEs of motion provided by a companion multi-degree-of-
freedom model are referred to.

Amongst various meaningful internal resonance conditions occurring in the actual planar
and non-planar free vibrations of suspended cables, the planar 2:1 resonance is addressed. As a
matter of fact, it describes a dynamic scenario typically occurring in both horizontal and inclined
cables, while at the same time being a resonance case where it makes sense to develop an
asymptotic analysis accounting for the higher-order effects of system quadratic nonlinearities.

An infinite-dimensional Galerkin discretization of the solution of the PDEs of motion is
performed, and a second-order asymptotic analysis of the ODEs is accomplished through the
method of multiple scales. Frequency-amplitude relationships and space-time dependent coupled
configurations associated with the resonant nonlinear normal modes of the system are determined.
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By accounting for also the effect of the assumed continuum model, the results of systematic
parametric analyses made to investigate the actual activation of the considered internal resonance
are discussed for both horizontal and inclined cables having different system parameters and
involving different resonant modes in the interaction (see Fig. 1, A/z=~ 1.28, 2.95, 3.23, 5.48).
Remarkably qualitative differences are seen to occur between horizontal and inclined cables as
regards the nonlinear interaction effects of a characterizing issue of the relevant planar linear
dynamics, namely the modification from crossover to avoidance (veering) in the natural frequency
spectrum along with the associated transition from purely symmetric/anti-symmetric (S/A) mode
shapes to hybrid (asymmetric, H) mode shapes, as shown in Fig. I.
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Figure 1 Crossover (S, A) and avoidance (H) phenomena (mode shapes) for a) horizontal and b) inclined cables,
respectively: dotted lines denote non-crossover/avoidance resonant cable parameters A/ and modes (r, 8).

As a matter of fact, owing to the asymmetry effect of inclined equilibrium and to the
associated asymmetrical modal functions, the nonlinear orthogonality condition of the modes is
never satisfied and the pertinent resonance activation is nearly always possible, occurring over a
wide range of the A/7 parameter. As an example, both analytical predictions and numerical results
highlight that the nearly tuned 2:1 resonance involving the low-frequency (nearly) anti-symmetric
first mode is activated around second avoidance (47 = 4) regardless of the involved high-
frequency, hybrid, third or fourth mode. This outcome enlightens on the distinguishing dynamic
characteristics of the inclined cable at second avoidance with respect to those of the horizontal cable
at corresponding second crossover (A/z = 4), whose 2:1 resonance is activated only when the high-
frequency mode, out of the two coexisting modes, is symmetric.

The significant effects of cable sag, cable inclination and cable extensibility on the
asymptotic solutions as well as on the system nonlinear behaviour are investigated, and the
meaningful contribution from longitudinal displacement dynamics is highlighted. The space-time
variability of the system dynamic configuration and the nonlinear dynamic tension is addressed.
When considering a finite number of modes in the Galerkin expansion, analysis of the modal
convergence properties of the asymptotic solutions allows us to discuss the important issue of the
proper selection of a reliable reduced-order model of the actual continuum system.
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Specifically, the work aims at contributing on the following main aspects of cable nonlinear
dynamics: (i) model validation at the continuum level, (ii) characterization of the nonlinear normal
modes in a meaningful condition of internal resonance, and (iii) identification of proper - and
possibly minimal - reduced-order models to be reliably referred to in finite-dimensional analyses.

The first issue is addressed by comparing the results obtained analytically for the horizontal
cable with either the condensed or the full (non-condensed) model (namely, by considering
dependent vs independent cable longitudinal displacement fields), and by validating them through
independent, purely numerical investigations. Also the outcomes of using either approximate or
exact non-condensed PDEs for the inclined cable are compared. This allows us to obtain basic
information about whether and when it is actually necessary/possible to consider full/condensed or
exact/approximate sets of PDEs.

The second issue is dealt with by referring to the full continuum model of either horizontal
or arbitrarily inclined cables, and by considering different values of the cable elasto-geometric
parameter (which accounts for the variability of its sag-to-span ratio, extensibility and angle of
inclination). Frequency-amplitude and dynamic configuration relationships characterizing cable
steady motion are obtained analytically, and are compared with the numerical results of companion
finite difference investigations aimed at confirming the analytically detected features as regards
internal resonance activation, internally resonant softening/hardening behaviour of the structural
system, modal interaction features, and space-time evolution of the response.

Finally, the third issue is addressed by performing systematic modal contribution and
convergence analyses of the main dynamic characteristics of system response. These are aimed at
distinguishing between (i) cases in which suitably reduced-order models, possibly accounting for
even the solely two modes entering the reference 2:1 internal resonance, can be considered in a
finite-dimensional analysis of cable dynamics without running the risk of withdrawing meaningful
nonlinear phenomena, and (ii) cases wherein accounting for contributions from other, possibly
higher-order, modes non-modelled in the theoretical analysis becomes mandatory to the aim of
reliably describing the nonlinear dynamics.

Overall, as regards this aspect, it can be said that: (i) accounting for contributions from
(higher-order) non-resonant modes is very important, unless a very low-sagged cable is considered;
(ii) it may be enough to account for them in the nonlinear amplitude and frequency equations only,
thereby developing a so-called improved first-order solution (or incomplete second-order solution),
for relatively low-sagged cables; (ii1) it is necessary to take them into consideration also in the
nonlinear dynamic displacements (full second-order solution), as the effects of cable sag and/or
cable inclination (asymmetry) become significant.
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In a paper machine, the fiber and water mixture flows onto a wire-screen belt as shown in Fi gl. As
the wire-screen belt travels horizontally, water is dripped through the screen and fibers are left on the screen.
In some operating conditions large lateral vibrations of the wire-screen belt occurred.  The mechanism of
this phenomenon is investigated.

The experimental apparatus is shown in Fig.2. A sheet moves to the right at a constant speed v.
Water flows out onto a sheet from a spout, which is 94 mm in width. The displacement of the sheet is
measured at the center of the span as shown in the figure.  Measured data are shown in Fig.3.
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Fig.1  Schematic of a paper machine

Figure 3(a) shows the displacement measured at the mid-span of the traveling sheet when no water is
fed. The observed vibration is small.  When water is fed onto the sheet, the vibration became larger as
shown in Fig.3(b). Its dominant frequency is about 7 Hz lower than that of Fig.3(a) since the mass was
increased by feeding water onto the sheet.  In Fig.3(c) vibration is shown when the sheet traveling speed is
zero and the rate of water fed on the sheet was the same as in Fig.3(b). Observed vibration is as large as
Fig.3(b). From these figures we note that feeding water causes sheet vibration whether the sheet travels or
not.
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Roller D

Fig. 2  Experimental apparatus
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The equation of motion for sheet motion is expressed as,

p( du ou  ,0) T o P

S =—=+2 +V'— |-——-p-g~=0 1

b(ar‘* Yo o) bad | S "
where

u @ vertical displacement of the sheet, v : traveling speed of the sheet, 7" : tension of the sheet, b :
width of the sheet, p : the pressure of the water acting on the sheet, p : sheet density. From
experiment the rate of water dripping through the sheet is proportional to the pressure p acting on
the sheet.  Therefore the relation is expressed as,

oh oh
-P.‘»(5+Va)=cnp (2)

where Cp is the permeability.

The pressure acting on the sheet consists of gravitational and inertial forces expressed as

0’u o’u , 0%u
= - —+2v—+v — 3
P p'“{g {6‘:2 Vatox | o ]} =

where py, is water density. The boundary conditions are

x=0  u=0.A=h (4a)

X=>5 2 =40, (4b)

We assume the solutions of the equations (1)-(3) are expressed as

u=u,(x)+ey, (x.7) (5a)

h=hy(x)+eh (x.1) (5b)
Using the following quantities,

U =wlu, H=h/h(i=12), X=x/L, t=w.t (6)

where @. =c¢,/L, ¢, =+/T/p . u and h. are quantities for normalization.

Figure 4 shows the calculated sheet displacement at the mid span of the sheet and dimensionless water
depth variation. We note that the phase of water depth variation is 90 degrees ahead of the sheet
displacement.  Therefore, sheet vibration is induced by the pressure variation of the water on the sheet.

-0.002 § — Sheet 0.001

------- Water Time

0.001 V U U U V U V v U V U \J V v V V 0.0005

0.002 -0.001

=]
Rl

Dimensionless sheet
wibration U1
Dimensionless water
depth variahon HI

Fig. 4 Calculated sheet displacement U\=u)/u+ at the mid-span of the sheet and dimensionless water depth
variation /1y=h)/h« where u« and /. are quantities for normalization
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Birgit Sauter, Youping Yi, Rainer Gausmann

In recent years several types of ultrasonic motors have been realized and used in industrial
applications. The most common type is the traveling wave motor, in which a bending wave in
a beam or plate is used to generate the motion of the rotor due to frictional forces. Other types
of motors may be realized by a superposition of bending vibration and longitudinal vibration
in a beam. Both in the traveling wave motor and in the other types of ultrasonic motors the
vibration of the system is generated by piezoceramics, in which electrical fields are coupled
with mechanical stress or strain. An overview can be seen for example in [1].

The aim of this presentation is to investigate an ultrasonic motor which is based on a
superposition of longitudinal vibration and torsional vibration. This type of hybrid motor is
supposed to have a high torque and a good efliciency. The working principle can be seen in
figure 1. The voltages to excite the torsional vibration and the longitudinal vibration are shown
in the upper part of the figure. The time at which the linetype changes from solid to dashed is
the time which is shown below the voltage diagram. This figure also shows that the motor is
constructed in such a way that it consists of one rotor and a stator on each side of the rotor.
Two voltages are used to excite the vibration of the system: One is exciting the longitudinal
vibration, the other voltage for the generation of the torsional vibration has a temporal phase
shift of 90 degrees so that surface points of the stator move on elliptic orbits, figure 2. Each
stator is driven by one piezoceramic ring in the longitudinal direction and another ring is used
to excite the torsional vibration.

vae Vo Vr v v Vv
v 1
P 1
5 )" 7 e [
BT T / T 5
L7557 A W it TR | ] 1

7 = g i
yaa ’ S ’
J‘ ‘ ‘l
= -
1 ’ T * |
= ! = —
1 \\ J | | — ] L J'/ | L — )
(a) (b) ©) (d)

Figure 1: Working principle

For a good operation of the motor the amplitudes of the vibration may not be too small.
Therefore, both the longitudinal and the torsional vibration should be excited in resonance
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Figure 2: Trajectories of surface points of one of the stators

if possible. Thus the goal is that the eigenfrequencies of the corresponding modes coincide.
However, as we know that the speed of longitudinal waves and the speed of torsional waves
are quite different, it is necessary to have some additional design steps, which have to be
undertaken. In this presentation a ring is attached to the stator which adds both inertia to
the longitudinal motion and also to the torsional motion of the stator. The magnitude of
influence, however, is different for varying diameters or lenghts of the ring. In order to get
a first estimation of the eigenfrequencies of the stator an analytical approach in the form of
an eigenvalue problem for both vibrations is used. As the system is symmetric with respect
to the rotor it is sufficient. to consider only one half of the system. As can be seen in figure
3 the model consists of six sections which are bonded together. The first section begins at
the rotor and is characterized by the local coordinate z in figure 3. The second section is
the ceramic ring described by local coordinate z5, which excites the longitudinal vibration, the
third section (z4)is the metallic part between the two ceramic rings, the fourth part is the
ceramic which excites the torsional vibration. The corresponding coordinate is z3. The sixth
section with local coordinate z, is the metallic part between the ceramic and the metallic ring
and the last part with coordinate z; is between the ring and the end of the stator. Each of
these sections with corresponding length ¢; is modeled with a rod theory which takes also into
account the piezoelectric effect in the ceramics. One ceramic ring is poled in the axial direction
to excite the longitudinal direction. The other ceramic is poled in the circumferential direction
to generate the torsional vibration. In reality a ring cannot be poled in circumferential direction
so that it has to be approximated by several segments which are poled in a direction normal to
the electrodes. In addition, for the eigenvalue problem the transition conditions between the
segments are important. They are given by a continuity of displacement and rotational angle
and by force or moment equilibrium. Especially the piezoelectric excitation and the influence
of the rigid ring enter through these transition conditions. Also the boundary conditions are
important. For the longitudinal vibration it is supposed that at the end towards the stator we
have a rigid boundary whereas the other end is supposed to be free. For the torsional vibration
both ends are assumed to be free.

Results are obtained for different variations of all parameters. For example, in figure 4
the eigenfrequencies for longitudinal vibration and torsional vibration are plotted as a function
of the position of the ring. Other parameter variations may be done similarly.

(1] S. Ueha, Y. Tomikawa, Ultrasonic Motors: Theory and Applications, Clarendon Press, Ox-
ford, 1993

[2]Youping Yi, W. Seemann, R. Gausmann, Jue Zhong, A method for matching the eigenfre-
quencies of a hybrid piezoelectric motor, Ultrasonics, to appear.
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NATURAL FREQUENCIES OF ROTATING AND NON-ROTATING FGM CIRCULAR
CYLINDRICAL SHELLS

C.B. Sharma and M.N. Naeem

Department of Mathematics, UMIST, Manchester, M60 1QD, UK.

Introduction

The study of vibration characteristics of thin circular cylindrical shells is unarguably a very important branch of
research in structural dynamics. In this paper vibration frequencies of rotating as well as non-rotating cylindrical
shells are analysed. The shells are made out of a simplest form of functionally graded material (FGM) with only
two common material constituents (stainless steel and nickel) which gradually change from one to another through
the shell thickness. Apart from the simply supported conditions, where the closed form solutions are available,
approximate solutions are sought for some other commonly occurring boundary conditions. The well established
Rayleigh-Ritz method is adopted along with relevant Ritz polynomials (introducing axial dependence) to study the
vibratory behaviour of non-rotating FGM shells. [1] The frequency spectrum of rotating FGM shells is analysed by
utilizing Hamilton’s principle. Budiansky and Sanders [2] shell equilibrium equations which include centrifugal and
coriolis forces are considered here for rotating shells. To introduce the FGM characteristics, a volume fraction law
is utilised to take into account the variation in constituent materials composition. In this case, axial modal
dependence is characterized by the characteristics beam functions. Circumferential dependence of modal forms is
assumed to be of harmonic type. The eigenvalue problem is formulated using Galerkin’s procedure. Frequency
parameters calculated here are compared, where possible, with corresponding results available in contemporary
literature. Very good agreement is found to exist between various sets of results.

FGM Concept (Volume Fraction Law)

Like many biological materials found in nature which have FGM properties based on environmental conditions, the
FGMs considered are fabricated from two or more material constituents according to the prevailing conditions such
as high temperature conditions, a highly corrosive environment, and requirements like toughness, durability and
machinability etc.

For a FGM fabricated from k constituent materials a particular property P can be expressed in the form
P=FF.  (i=1,2:5k) (n

where P, and V, are the material property and volume fraction of the ith constituent and for the repeated index i in

equation (1) summation convention is implied. It is also obvious from the volume fraction assumption
k

> V=1

i=1

The volume fraction for a cylindrical shell is defined by the expression
v =((2z+h)/2h)" 2

where h is the uniform thickness of the shell with the reference middle surface and p is the power law exponent,
0 < p <oo. Here, a circular cylindrical shell fabricated using the simplest FGM consisting of two material

constituents is considered. The material properties, E v and p of the FGM are expressed as the functions of
E. E,, v, v,and p,, p, ,which are Young’s moduli, Poisson’s ratio and mass densities for the materials 1

and 2 respectively:

E=(E, —E,)Qz+h)/2h)" + E,, v=(v, —v,)((2z +h)/2h)" +v, 3)
p=(p, = p 2z +h)/2h)* + p,
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The material properties of the shell vary continuously from the material 2 at the inner surface to material 1 at the
outer surface. It is obvious that at the inner surface z =—~h/2, E=E,, v=v, and p = p, (material 2) and at

the outer surface z=h/2, E=E,, v=v, and p= p, (material 1), where z =0 corresponds to the middle

surface of the shell. A cylindrical shell fabricated of functionally graded material is essentially an inhomogeneous
shell consisting of a mixture of isotropic materials. Unlike shells laminated of fibre-reinforced material where
transverse shear deformation effects can be significant, for a FGM shell, a classical thin shell theory is applicable if

radius-to-thickness ratio is < 20,

Outline of Solution Procedure

In this piece of research, the theoretical formulation is based on the best first order thin shell theory [2] adapted for a
FGM shell. Strain and kinetic energy expressions are derived taking into account asymmetry of material properties
about the shell mid-surface due to the presence of coupling stiffnesses, which are zero for homogeneous isotropic
shells. In this case of a rotating shell, the kinetic energy expression also includes the terms pertaining to centrifugal
and coriolis actions. The initial hoop tension, a product of the centrifugal force, is included here. Hamilton’s
principle is then employed to derive the governing equations of motion. These are then written in terms of
displacement functions for a rotating shell. For the resulting partial differential equations a general travelling wave
solution is sought by the product method. In the modal forms, axial modal dependence is assumed in the form of
characteristic functions of a vibrating beam, to facilitate the study of the influence of boundary conditions on shell
vibration characteristics. Subsequently, Galerkins procedure is applied to derive the ensuing eigenvalue problem.
This then is solved using a MATLAB software. As usual, eigenvalues and eigenvectors correspond to frequency
parameters and modal forms respectively.

Results and Discussion

The influence of boundary conditions, rotating speed, shell geometrical and material parameters and circumferential
wave numbers on the shell vibration characteristics are studied but, due to the space limitation, only the frequency
parameter is discussed here. In order to check the accuracy of the present method, comparisons of natural
frequencies are made with those found in the contemporary literature. Some of these were presented for non-
rotating FGM shells in [1] for different boundary conditions and excellent agreement was noted between the two
sets of results. In Table 1, a comparison of frequency parameter A for an infinitely long rotating isotropic
cylindrical shell of given parameters is made with the results given in Chen et al [3]. Here A, and A; denote the
frequencies of backward and forward travelling waves respectively for rotating velocity, €2=0.05 cps. Clearly
excellent agreement between the two sets of results is observed. Table 2 corresponds to the data identical with those
in Table 1 except that the rotating velocity, =1 cps. Once again the two sets of frequencies agree very well with
cach other.

The difference in the corresponding results of Tables 1 and 2 is due to the difference in rotating velocities. It is seen
that Ay, is slightly increased while Ay is slightly decreased due to the increased rotating velocity, €. It may be
remarked that the value of the frequency for backward wave is slightly higher than that for a standing wave whereas
for forward wave the reverse is the case. Also the variation of backward and forward frequency parameters with the
circumferential wave number, n, is found to be of a similar nature as for a non-rotating shell.

Table 1 Comparison of frequency parameters A for an
infinitely long rotating isotropic shell: (R/A = 500, E =
1.83x 10" N, v=10.3, p =7492kg/m’, m = 1,

Table 2. Comparison of frequency parameters A for an
infinitely long rotating isotropic shell: (R/h = 500, £ =
1.83x 10" N/m’, v=03, p =7492kg/m’, m = 1,

€2=0.05 ¢ps) Q=1 cps)

Chen et al Present | Chen et al Present Chen et al Present | Chen et al Present
3] 3] 3] [3]

n Ay Ag n Ay Ay

21 0.001556 0.001556 0.001541 0.001541 2] 0.001712 0.001689 0.001403 0.001380
9 9 ) 4 ¥/ 7 9 8

31 0.004387 | 0.004387 | 0.004376 | 0.004376 3 | 0.004501 | 0.004491 | 0.004269 | 0.004259
6 6 0 0 2 1 5 5

4| 0.008406 | 0.008406 | 0.008397 | 0.008397 41 0.008494 | 0.008488 | 0.008312 | 0.008307
2 2 1 1 5 8 8 1

51 0.013591 | 0.013591 | 0.013583 | 0.013583 51 0.013662 | 0.013659 | 0.013514 | 0.013510
0 0 6 6 8 1 4 7

6 | 0.019935 | 0.019935 | 0.019929 | 0.019929 61 0.019995 | 0.019993 | 0.019870 | 0.019868
5 4 2 2 8 2 6 0
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Figures | and 2 show the variation of natural frequency €2 with the circumferential wave number n for a rotating
FGM shell with radius to thickness ratio R/ h =500, axial wave number m = l and the power law exponent
p = 1. These two sets of figures correspond to rotation speed € = 5,15¢ps respectively. The upper and lower

curves (shown by solid and dotted lines) correspond to the frequencies for backward and forward travelling waves
respectively.
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(R/h=5000m=1,p=1,Q=5) (R/h=500,m=1p=1,Q=15)

From these two figures, it is apparent that for a rotating shell the trend of frequency variation with circumferential
wave number n resembles that observed for a stationary cylindrical shell. However frequencies for backward
travelling waves are in general on a higher side than those for a stationary cylindrical shell, whereas the converse is
true for the frequencies for forward travelling waves. It is also seen that the difference in frequencies between the
corresponding backward and forward frequency curves is more noticeable for low n — values and it decays gradually
with increasing n. The two sets of curves appear to coincide with each other for higher n — values. This behaviour
is also a function of parameters L/R and €). The frequency curves appear far more separated for higher values of
L/R than for its lower values. This separation between two sets of frequency curves is also enhanced with rotating
speed C). It may further be remarked that, as for a non-rotating shell, the frequency parameters for a rotating shell
also decrease with p, the power law exponent. This decrement in frequency parameters is mainly the result of the
arrangement of the constituent materials forming a FGM shell.
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This paper presents an application of p-type numerical method to the vibration and
buckling analyses of first order shear deformable doubly connected plates as shown in the
following figure. The middle plane of an arbitrarily shaped plate with an opening is divided
into three quadrilateral sub-regions as an example. The thickness (/) of the plate is assumed
to be uniform and small in comparison with the other in-plane dimensions.

Figure. Middle plane of a doubly connected plate divided into three quadrilateral
sub-regions.

The coordinates (x, y) of an arbitrary point inside the quadrilateral region are
interpolated using polynomials in the natural coordinates ¢ and 5 , [—1<(&,n7) < +1] which
are very specific to the sub-region in which they are defined. The orders of the interpolating
functions will depend upon the four boundaries of the quadrilateral sub-region and the
geometric nodes that are selected to define the geometry accurately. The number of
geometric points used to define a sub-region will depend upon the type of curvilinear edges it
has and the points can lie on the boundary as well as in the interior. By using the prescribed
coordinates (x,,y,) of the geometric points and the shape function N;(&,7)with

i =1,2.3,---,n, the coordinates can be represented as shown below(Weaver and Johnson [1]).

x=E N,y =ENEm, (M)
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In the first order shear deformable plate bending theory, the primary unknowns are
the three displacement components (u,v,w)at the middle plane in the(x,y,z) directions
respectively and the two components (/, 3,)of the rotation of the normal to the middle

surface. These primary variables are also interpolated. in the manner similar to the
coordinates of an arbitrary point on the middle plane.

u=3 &MU, 1v=5S(EnW, s w=SSEnW,
B =SSm0, s By =SS, @)

In the above equations, f,(¢&,7) is the displacement shape function and UV, . W,, @,,and ¢,

correspond tow,v,w, f3,, and [, respectively at the ith displacement node. It should be
noted here that much higher order polynomials are used for displacement components than
the interpolation of the coordinates and the displacement nodes are defined separately from
the geometric nodes. If fand m denote respectively the orders of the polynomials in £and
77, the number of displacement nodes required is: p = (£ +1)(m +1).

Using the standard procedure of the Rayleigh-Ritz method, the stiffness matrix [K]
and mass matrix [M] can be derived for each sub-region of the plate and then assembled
appropriately to obtain the matrix equation of motion,[M]{I'} + [K]{I'} =0, for the free
vibration.  The numerical results are then obtained for the dimensionless frequency
A=wa’\ ph! D for various plates. Here, {I'}= displacement vector, a = length of the

square plate, p = mass density, @ = circular frequency and D = flexural rigidity of the plate.
In the analysis of a plate problem by the present method, the defined geometry will consist of
a pre-selected number of quadrilaterals and remain fixed. The accuracy in the results is
improved by increasing the orders of the polynomials interpolating the displacement
componentsu,v,w. f3,, and },. A convergence study is normally performed before getting

results for different cases. By this method, a plate without the hole can also be analyzed
using only one quadrilateral domain.

Table. Dimensionless natural frequency A =wa’\/ph/ D for a square plate with a
circular hole at the center.

Mode CcCccC CFCF SFSF
P-M I-DEAS P-M I-DEAS P-M I-DEAS
1 37.52 37.41 22.39 22.39 9.29 9.29
2 125.22 125.25 43.34 43.30 35.67 35.66
3 145.77 144.97 | 118.56 118.61 87.58 87.58
4 230.77 | 230.33 | 137.48 137.29 122.37 122.43
5 290.11 289.89 | 159.48 | 158.70 140.72 139.93

As a numerical example, the natural frequencies of a square plate with a circular hole at the
centre are calculated using only one quarter of the geometry and two quadrilateral sub-
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regions. The use of symmetry conditions with regards to geometry, boundary and loading
has been made in the analysis. Second order polynomials are used to define each of the two
quadrilateral segments of the plate and tenth order polynomials are used to describe the
displacement fields given by Eq. (2). The parametric values used for this example include:
Poisson’s ratio (v) = 0.3, thickness to length ratio (h/a) = 0.01, and hole diameter to length
ratio (d/a) = 0.25. Three combinations of the boundary conditions, namely all sides clamped
(CCCC), clamped-free-clamped-free (CFCF) and simply supported-free-simply supported-
free (SFSF), have been used for the analysis of the plate. The values of the frequencies were
also calculated by the finite element method using the computer codes I — DEAS [2]. Eight —
node parabolic elements were used to perform the FE analysis. The table shows excellent
agreement between the results from the two methods.

Buckling analysis of plates and shells can also be performed using the present
method. In the case of a plate buckling problem, the linear stiffness and load matrices are
required. It is assumed here that the plate is divided into few quadrilateral regions, subjected
to an in-plane compressive load, and analyzed first to obtain the in-plane stresses
o,,o0,andz_, which are then known for all locations on the middle plane of the plate. The

expression for the work done on the plate under in-plane load for its bending is used to
calculate the buckling load matrix [L] (Bulson[3]).

ow
o] ow owl| O, Oy ox
— -—-;‘ —_— — e At
! 2 1,4.!-{9 { ax ay H:G.ty Uy jl a_w d).d) (3)
oy

While integrating for [L], the state of in-plane stress at each integration point in each of the

quadrilateral region is known from the analysis mentioned above using only the displacement
fields for # and v. Taking the variation of the potential energy, one can easily derive the
following equilibrium equation([K]+ £, [L]){I'} =0, which is an eigen-value problem.

The symbol P, =the critical in-plane load applied to the edge of the plate. It is a standard

practice to calculate the values of the buckling coefficient k = P_b/(z* D) for plate buckling

problems. The buckling coefficient has been calculated for rhombic and square plates
subjected to different boundary and loading conditions and will be presented.
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Exact solutions are often available for natural frequency, critical buckling and wave
propagation problems, i.e. the discretisation errors and other approximations of methods such as
FEM are avoided. The same is true for many related problems in other disciplines, although this
paper is simplified by giving detail only for the vibration of rigidly jointed plane frames. Exact
solutions can be obtained because uniform members of frames have differential equations which can
be solved to obtain member equations which relate the amplitudes of the sinusoidally varying forces
and displacements at their ends. The member equations [1] involve transcendental functions of the
eigenparameter A, i.e. of frequency squared, and of the mass per unit length of the member. Thus a
dynamic overall stiffness matrix K() results when such members are assembled to form a frame

and there is no need for the separate mass matrix M of the finite element method (FEM). Hence the
linear (algebraic) eigensolvers used by FEM and other approximate methods cannot be applied and
so it is necessary to use instead the Wittrick-Williams (or W-W) algorithm [1], which is theoretically
proven to always give the number of eigenvalues exceeded by any trial value of A and so has
yielded many secure methods for converging on the eigenvalues. The use of the W-W algorithm is
essential as otherwise there will certainly be structures for which some (very exceptionally all!) of
the eigenvalues will be missed, e.g. when performing the computational equivalent [2] of finding the
zeros of a plot of Det{K(4)}.

Hypothetically, the same exact results could alternatively be obtained by solving an
appropriately formulated FEM problem of infinite order on a computer of infinite accuracy and this
idea was used in an early alternative proof of the W-W algorithm [3]. However, although methods
of varying sophistication [4,5] have been developed for finding the eigenvectors, i.e. the modes of
vibration, of the transcendental eigenproblem a complete analogy with this hypothetical linear
eigenproblem appears never to have been presented and used for this purpose. This is one reason
why only very recently [6] has it been possible to obtain the eigenvectors with matching degrees of
certainty, reliability and accuracy to those that the W-W algorithm has always given for the
associated eigenvalues. Briefly, this paper indicates an inverse iteration method based on the above
analogy and which hence probably gives the closest relationship that it is possible to obtain between
linear and transcendental eigensolvers, one consequence being that it shares the almost machine
accuracy mode finding ability of the recent method just mentioned [6], which can be interpreted as
being a much simplified form of the method presented here.

The hypothetical linear eigenproblem is

(K-AM)D=0 (1)

where K , M and D are, respectively, the static stiffness matrix, the mass matrix and the
displacement amplitude vector, with K and M being symmetric and with K additionally being
positive definite.

Linear eigensolvers, e.g. inverse iteration, can involve computations close to, rather than
exactly at, an eigenvalue so that the null right hand side of Eq. (1) becomes suitably non-null, see
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Eq. (2) for which (K o /T.M) can be partitioned as in Eq. (3). (Early mode finding for the
transcendental equivalent of Eq. (2), i.e. when (K —AM) is replaced by K(2), solved it for a single
randomly chosen value of P and so was called the random force vector method [4,5].)

(K-AM)D=P (2)
K,-AM,; K,-AM, }orderN,—no 3)
|KL-aML K_.-AM,_ |} ordern (

Here the subscript ¢ indicates degrees of freedom at the joints of the frame, while i indicates
interior freedoms of the members, i.e. all other freedoms.

Members are only connected to joints at their two ends. Hence the K; —AM; of Eq. (3) is
block diagonal, with one block per member. Similarly, K, — AM,_ also receives one block per

member, which is uncoupled from the block from any other member, but is not diagonal, not least
because it is not square. It is physically obvious that as N — oo the mass within M, approaches the

total mass of all of the members. Therefore the effect of M. becomes infinitesimal and so it can be

ignored without loss of accuracy. Similarly, M. receives infinitesimal contributions from the

cc

members and so consists solely of any lumped masses attached at the nodes. Hence Egs. (1) and (2)

give
K:‘;‘ _'Z'M:'i K!'r D;‘ . P:‘ (4)
K. K.-AM_ |D.| |P.

Hence eliminating D, by the arrested form of Gauss elimination, usually used when computing,

(K, -iM,)" K Ds}'
0 K, (2) | D.

where superscripts U and * respectively denote the upper triangular form and the modified form of
matrices given by the Gauss elimination. Hence when P, =0, so that P.(1)=P,, ie. in free

e

gives

P.(4)

ks ] 5)

vibration problems, for which the members do not carry sinusoidally time dependent forces, the
second row of Eq. (5) gives

K (2D, =P, (6)

Equation (6) gives the exactly correct P, (i.e. without discretisation errors) for any of the
infinitely large number of possible choices of D_. Hence, because the transcendental formulation
gives an equation identical to Eq. (6) except that K(A) replaces K_(4), it follows that K(}L) must
be identical to K_(A). Therefore the transcendental eigenproblem and the hypothetical infinite

order linear eigenproblem are analogous, in the sense that if they were both to be solved with equal
care they would yield identical eigenvalues and eigenvectors. However a crucial difference is that
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the transcendental eigenproblem is solvable in the real world, whereas the hypothetical infinite order
linear eigenproblem is not. Importantly, this enables inverse iteration to be applied to the
transcendental eigenproblem to obtain essentially the same near machine accuracy modes as would
be given by solving the hypothetical infinite order FEM problem on a computer of infinite accuracy.
Space limitations prevent the method being given in full, but it is indicated as follows.

Using r as the iteration counter, the key equation when inverse iteration is applied to the
hypothetical linear eigenproblem of Eq. (1) (see also Eq. (4)) is

D:.e.l Mr‘i’ 0 D:-
e T ]

in which the RHS is known and consists of two vectors, which can be written as

Kfi —irMﬁ KJ‘L'
Kfc Krc —IIMrc

P/ =MD/, P/ =M_D/ (®)

It was explained above that in the transcendental method (and in the hypothetical linear
eigenproblem) M. consists solely of any lumped masses at the nodes and so P/ is readily

computed when using the transcendental method. Then P/ is computed by numerical integration

based on the mass per unit length that is equivalent to M ;

The transcendental inverse iteration method briefly indicated above has been evaluated via
problems chosen to be demanding and works well for all of them. A selection of these results will be
presented.
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