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Preface 

 
The International Symposium on Vibrations of Continuous Systems (ISVCS) is a forum 

for leading researchers from across the globe to meet with their colleagues and to present 

both old and new ideas in the field. Each participant has been encouraged either to present 

results of recent research or to reflect on some aspect of the vibration of continuous 

systems, which is particularly interesting, unexpected or unusual. This type of 

presentation is meant to encourage participants to draw on understanding obtained through 

many years of research in the field.  

ISVCS focuses on the vibrations of the vibrations of the fundamental structural elements: 

strings, rods, beams, membranes, plates, shells, bodies of revolution  and other solid 

bodies of simple geometry. Structures composed of assemblies of structural elements are 

also of interest, especially if such structures display interesting or unusual response.  

 

The ISVCS started 20 years ago, at Stanley Hotel, Estes Park, Colorado, USA August 11-

15, 1997. It comes every two years, the present 11th Symposium takes place on 16-22 

July 2017 at the Victoria Hotel, Llanberis, Snowdonia, Wales UK. Typical days at the 

Symposium will consist of morning technical presentations, afternoon hikes or excursions 

in the local area and, in the evening, further technical discussions and social gatherings. 

The various outings and social gatherings provide important opportunities for relaxed and 

informal discussion of technical and not-so-technical topics surrounded by the natural 

beauty of the Snowdonia National Park. 

 

This volume of Proceedings contains 20 short summaries of the technical presentations to 

be made at the Symposium, as well as short biographical sketches of the participants. 

 

The present edition is the first one without the presence of Art Leissa, founder and 

Honorary Chairman of ISVCS. We all miss Art. Many others senior board members are 

absent (Y. Narita, J. Wauer, S. Dickinson, P. Hagedorn); we hope that some of them will 

join again in the next Symposia. 

 

Last but not least we remember with pain that Ali Nayfeh, a frequent attendee of past 

Symposia, left us unexpectedly on March 27 at the age of 83. An obituary by Prof Walter 

Lacarbonara is currently in press in Journal of Sound and Vibration. 

 

General Chairman  Erasmo Carrera 

Editorial Chairman   Ilanko Ilanko 
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Publicity Chairman Yoshihiro Narita 

Honorary Chairman Art Leissa 
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Abstract 

The vibration correlation technique, the VCT, consists of measuring the natural frequencies of a 

loaded structure, and monitoring their change, while increasing the applied load. Assuming that 

the vibrational modes are similar to the buckling ones, one can draw a curve, displaying the 

natural frequencies squared vs. the applied load, and extrapolating the curve to zero frequency 

would yield the predicted buckling load of the tested structure. Singer et. al
 
[1], dedicated a 

whole chapter in his book, to review the VCT approach and its applications.  

Besides its capability to nondestructively predict the buckling load of thin walled structures, the 

approach can also determine the actual in situ boundary condition of the structures, and 

therefore the VCT is usually classified in two main groups according to their approach: (1) 

determination of in situ boundary conditions, and (2) direct prediction of buckling loads. 

The VCT method has been successfully applied to beam and columns axially loaded, (see for 

example References 2-6), yielding a straight line between the frequency squared and the 

compressive load. This relationship can be written as: 

 

                                                                                                                           

(1) 

where f and P are the natural frequency (in Hz) and the applied compressive load, respectively, 

fo is the natural frequency at zero load and  Pcr is the buckling load of the column. It was shown 

analytically that Equation (1) is valid for a column on simply supported boundary conditions, 

while for other boundary conditions, the straight line would to a slightly curved one. Following 

this successful application, the VCT method was used to define both boundary conditions and to 

predict the buckling loads of plates and shell type structures. Since the early seventies (last 

decade) an extensive work has been performed at the Laboratory of Aeronautical Structures, 

Faculty of Aerospace Structures, the Technion, I.I.T., Haifa, Israel, to better define the in situ 

actual boundary conditions of stringer stiffened aluminum cylindrical shells, and thus better 

predicting the experimental buckling loads [6,7] . The direct prediction of the buckling loads of 

compressively loaded shells, using the VCT method yielded in most of the cases, loads higher 

than the experimental ones, and it was shown that in the vicinity of the buckling load, the curve 

of frequency squared vs. the compressive load, ceases to be linear and performs a sharp bend 

towards the actual buckling (zero frequency) due to initial geometric imperfections of the 

specimens [7]. Recently, new studies [8] have shown again that the use of VCT method for 

direct predictions of buckling loads in composite shells is not yet mature to be applied in 

industrial applications, like space launchers. To overcome the above described shortcomings of 

the method, when applied to structures, like shell type ones, presenting non-stable behavior in 
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the post buckling region, a new relationship between the natural frequency and the applied 

compressive load was proposed by Souza et. al [9,10], yielding the following: 

 

                                                                                         (2) 

 

where p=P/Pcr, f=f/f0 , P and f being the measured applied axial load and the natural frequency, 

respectively, fo is the natural frequency at zero load and Pcr is the extrapolated buckling load 

based on the curve f
2
 vs. p. ξ

2
 is the “experimentally” knock-down factor based on the results of 

the test at relatively low loads (up to 60% from the predicted buckling load) . The process is 

depicted in Figure 1. 

 
Figure 1 The calculation of the predicted buckling load (Ppredicted) for a shell 

 

A similar approach is presented in [8] where graphs presenting the (1-p)2 vs (1-f2), where 

obtained by measuring the natural frequency and nondimensionalising it by division of the 

natural frequency at zero axial load, yielding the variable f. The nondimensional variable p, is 

defined as the ratio between the axial load divided by the numerical buckling load.  A second 

degree polynomial curve is then fitted to the experimental data. Then the polynomial equation is 

once derived to yield the value of the ξ2. The predicted value of the VCT approach would then 

be Pcr (VCT) = ξ Pcr (numerical buckling load) (see Figure 2).  

 
Figure 2 Experimental results using VCT - DLR Shell Z36 : (a) prediction of the buckling load. 

(b) the shell mode shape at 450 aperture , as projected by the RTU laser Doppler vibrometer. 

 

The VCT is revisited, reviewing the main achievements of the method, and presenting recent 

applications to laminated curved stringer stiffened cylindrical panels (see Figure 3- Dcom1 a 

hybrid panel with laminated composite skin and two aluminum longerons) using a new 

excitation method, as well as experimental results performed on laminated composite cylindrical 
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shell, excited by a shaker and loudspeaker, while the response is monitored using a laser based 

system. The review is concluded by providing adequate guidelines for successful application of 

the VCT approach. 

 

 
Figure 3 Determination of first buckling load using VCT : 16.4 kN (compared with 16.19kN 

experimental value)– Panel Dcom1 
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Abstract

This research work was originated and inspired by a presentation made by Professor Arthur W.
Leissa at ISVCS 9, Courmayeur, Italy, on July 2013 [1]. According to his talk, authors realized
that the interesting phenomena related to mode aberration have rarely been investigated in the
recent years.

During service and due to the nature of applied loadings, structural components, such as stiffeners,
panels, ribs and boxes in aerospace constructions, for example, are subjected to stress fields. Those
stresses, and especially compression ones, may significantly modify the equilibrium state of the
structures and, thus, affect their dynamic response, eventually in a catastrophic manner. For this
reason, the evaluation and the analysis of the natural frequencies and mode shapes changing as the
elastic system is subjected to operational loads is of primary interest.

By employing a refined beam model with higher-order capabilities, this work, thus, investigates
the eigenvalue loci veering, crossing, coalescence and eventual buckling events due to mode de-
generation of metallic and composite structures undergoing pre-stress states and, eventually, large
displacements and rotations. The proposed models are based on the Carrera Unified Formulation
(CUF), according to which each theory of structures (either 1D or 2D) can be expressed as a de-
generated form of the three-dimensional equilibrium equations in a hierarchical manner [2]. As an
example, 1D beam theories can be formulated from the three-dimensional displacement field (u)
as an arbitrary expansion of the generalized unknowns (uτ); i.e.,

u(x,y,z) = Fτ(x,z)uτ(y), τ = 1,2, ....,M (1)

where Fτ are generic functions on the beam cross-section domain, M is the number of expansion
terms, and τ denotes summation. Depending on the choice of Fτ and the number of expansion
terms M, different classes of beam models can be formulated and, thus, implemented in a straight-
forward manner. Namely, in this work, low- to higher-order beam models with only pure displace-
ment variables are implemented by utilizing Lagrange polynomials expansions of the unknowns
on the cross-section.

Give a structure subjected to a pre-stress state σ0, it can be easily demonstrated that the lineariza-
tion of the virtual variation of the work of internal strains can be approximated as follows:

δ (δLint)≈< δε
T

σ >+< δ (δε
T )σ0 > (2)

or, in other words,
Ki jτs

T ≈ Ki jτs +Ki jτs
σ0 (3)
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Figure 1: Mode aberration of a composite box beam subjected to compression.

In Eq. (2), ε and σ are the vectors of strain and stress components, whereas < (·)>=
∫

V (·)dV . In
contrast, Eq. (3) shows that the fundamental nucleus (FN) of the tangent stiffness matrix, Ki jτs

T , can
be approximated as the sum of the FNs of the linear stiffness, Ki jτs, and the geometric stiffness,
Ki jτs

σ0 . According to CUF and in the framework of the finite element method, as in the case of this
work, finite element arrays of generally refined structural models can be formulated in a straight-
forward manner by expanding the FNs versus the indexes (τ,s = 1, · · · ,M) and (i, j = 1, · · · ,N),
where N is the number of nodes of the finite element employed. For the sake of brevity, the
derivation and the complete expressions of the FNs in Eq. (3) are not given here, but they can be
found in [2] and [3]. Once the global tangent stiffness matrix KT is known, the natural frequen-
cies and mode shapes of the structure can be evaluated by solving the usual eigenvalue problem(
KT −ω2M

)
u= 0, where M is the mass matrix. However, it is important to underline that Eqs. (2)

and (3) are based on the fundamental hypotheses that the equilibrium state is linear and the struc-
ture undergoes infinitesimal strains and displacements/rotations [4].

For representative purposes, a numerical example is shown here. We consider a cantilever single-
cell, two-bay composite box beam subjected to compression load P. The box is made of two
layers of carbon/epoxy material on each flange. In lamination A, the fibre orientation is 0 deg
in the top and bottom flanges and ±15 deg in the right and left flanges. On the other hand, in
lamination B, an angle-ply lamination ±45 deg is employed for all the flanges. Figure 1 shows
the variation of the natural frequencies for the first important modes and for different values of the
load P. Also, for the sake of completeness, Fig. 2 depicts some mode shapes of the box in the
case of P = 0. The analysis clarifies that, independently of the lamination angles, buckling occurs
approximately for the same compression loading. Nevertheless, Fig. 1 shows that, in the case of
lamination A, veering phenomena appear as a consequence of severe mode aberrations. Moreover,
Fig. 2 demonstrates the importance of employing adequate structural models when dealing with
this kind of analysis, especially if composite and thin-walled structures are considered. From this
point of view, due to its higher-order and enhanced capabilities, CUF is a good candidate for mode
aberration investigations.
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(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

Figure 2: Representative mode shapes of the composite box strucrure. Lamination A.

As a final comment, it must be underlined that the hypotheses according to which the approxima-
tion in Eq. (2) holds may be too much limiting in the case of problems that involve moderate or
large displacements, e.g. for analyses and investigations that go beyond the first buckling load.
In this case, and by assuming that the nonlinear equilibrium state is reached with infinitesimal
and consecutive load steps (i.e., dynamic effects are not accounted for), the tangent stiffness to be
employed for the linear, free-vibration eigenvalue problem comes from the following expression
of the internal strain energy:

δ (δLint) =< δε
T

δσ >+< δ (δε
T )σ0 > (4)

or rather
Ki jτs

T = Ki jτs +Ki jτs
T1

+Ki jτs
σ0 (5)

where Ki jτs
T1

represents the contribution due to the secant stiffness and Ki jτs
σ0 takes into account both

the linear and geometrical nonlinear stress components. Accordingly, the differences between
linearized and full nonlinear vibration problems will be discussed during the 11th International
Symposium on Vibrations of Continuous Systems.
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Abstract 

Acoustic vibrations of elastic bodies in fluid media are related to design of underwater acoustic 

wave devices, characterization of mechanical properties of materials, understanding of 

mechanical and biological sensing mechanism, developing methods to destroy virus, etc. A few 

experimental and analytical studies have been carried out, but mostly for various structures in 

Newtonian fluids [1-3]. Recently, the researches carried out by the group led by Sader showed 

that the viscoelastic properties of the surrounding fluid play a significant role in the dynamics of 

the submerged nanostructures  [4-6], and non-Newtonian fluid models should be employed to 

predict the experimentally observed phenomena that would not appear in a Newtonian fluid. 

 

Sader et al. only presented exact solutions for the simple breathing modes of elastic isotropic 

nanowires or nanospheres [5,6]. Also, at the nanoscale, the surface effect may become very 

important [7]. Therefore, in this study, we will present a three-dimensional exact free vibration 

analysis of a multilayered spherically isotropic hollow sphere submerged in a Maxwell fluid. 

The layered structure could be easily adapted to a sphere with a surface effect [8]. 

 

To deal with the solid phase (i.e. the multilayered hollow sphere), we employ the state-space 

approach developed by Chen and Ding [9]. In fact, two independent state equations with 

varying coefficients and partial operators could be derived as 
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where   and G  are two displacement functions, and 
1  and 

2  are two stress functions. They 

are related to the displacement components (
iu ) and the modified stress components ( ij ) by  
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Also, we have denoted 
ru w , and the modified stresses are defined as ij ijr  , with ij  

being the usual stresses. ijc  and   in Eqs. (1) and (2) are the elastic moduli and mass density, 

respectively;   and 
ik  are all material constants expressed in terms of ijc ; 

2

1  is the two-

dimensional Laplacian defined on a spherical surface. 

 

Equations (1) and (2) could be solved analytically by making use of the following series 

expansions: 
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where ( , )m

nS    are the surface spherical harmonic functions,   is the circular frequency, a  is 

the inner radius of the multilayered hollow sphere, and 
(1)

44c  is the elastic constant for the 

innermost layer (the first layer). Substitution of Eq. (5) into Eqs. (1) and (2) leads to two state 

equations in ordinary differential form, which can be easily solved. In fact, in view of the 

solutions thus obtained, we can establish the relationships between the state variables at the 

inner surface and those at the outer surface of each layer. By virtue of the continuity conditions 

between two adjacent layers, two sets of linear algebraic equations about the state variables at 

the innermost and outermost surfaces of a multi-layered hollow sphere are obtained: 

 

( ) (1)k kn k V T V   ( 1,2; 1,2,3, )k n                                          (6) 

 

0 0

20

0 0

( ) (1)

( ) (1)

r r

w w





    
   

   
T  )0( n                                               (7) 

 

where /b a   is the radius ratio, with b being the outer radius, 
T

1 1[ , ]n nV  and 

T

2 2[ , , , ]rn n n nG w V  are two state vectors, and 
knT  are the corresponding transfer matrices. 

 

The effect of the surrounding Maxwell fluid could be written as certain generalized spring-like 

(in the frequency domain) boundary conditions applied to the outer spherical surface: 

 

1 1( ) ( )n n nf                                                                (8) 

 

2 3( ) ( ) ( )rn n n n nf G f w     ,  
2 4 5( ) ( ) ( )n n n n nf G f w                              (9) 
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where 
inf  and 

ng  are coefficients depending on the fluid parameters as well as the frequency. 

 

In view of Eqs. (8) and (9) as well as the tractions-free conditions on the inner surface, we 

finally derive the following frequency equations for the free vibrations of the submerged 

multilayered hollow sphere: 

 

1 1 22 1 12 0n n nf T T     ( 1,2,3, )n                                                (10) 
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3 0 22 0 12 0n n nf T T     ( 0)n                                                  (12) 

 

Equation (12) is for the breathing mode, which is shown to be identical to that obtained by 

Sader in the case of a homogeneous isotropic sphere. Since the free vibrations are damping, the 

roots ( ) of these frequency equations are complex, and will be searched numerically.   
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Abstract 

The Acoustics Black Holes (ABH) effect results from the manipulation of bending wave 

propagation inside a thin-walled structure through thickness changes. With a tailored power-law 

thickness variation (h(x)=εxm, where ε is an constant and m the power idex), the phase velocity 

of the bending wave gradually reduces to zero in the ideal scenario, resulting in zero wave 

reflection and high energy concentration at the wedge tip [1]. The ABH effect attracts 

increasing attention as a promising passive vibration control method because vibration energy 

can be channeled and only a very small amount of damping material is required within the 

energy focalization region to achieve efficient damping to flexural waves [2]. In addition, it also 

shows potential in sound radiation control and energy harvesting due to the high energy 

concentration within a confined area [3, 4]. In these applications, however, the addition of 

vibration control or energy harvesting elements may affect the formation of the ideal ABH 

through their coupling with the host structure on one hand; topological or system optimizations 

may be needed to achieve the maximum performance on the other hand. To this end, a flexible 

model, which allows the consideration of the full coupling between the host ABH structure and 

various control or energy-harvesting elements to be embedded, is of paramount importance. 

We propose a semi-analytical model to analyze an Euler-Bernoulli beam with an embedded 

ABH feature and its full coupling with the damping layers coated over its surface [5]. By 

decomposing the transverse displacement field of the beam over the basis of a set of Mexican 

Hat wavelets, the extremalization of the Hamiltonian via Lagrange’s equations yields a set of 

linear equations, which can be solved for structural responses. Highly consistent with the FEM 

and experimental results (as shown in Figs. 1 and 3), numerical simulations demonstrate that the 

proposed wavelet-based model is particularly suitable to characterize the ABH-induced drastic 

wavelength fluctuation phenomenon. The ABH feature as well as the effect of the wedge 

truncation and that of the damping layers on the vibration response of the beam is analyzed. It is 

shown that the conventionally neglected mass of the damping layers needs particular attention 

when their thickness is comparable to that of the ABH wedge around the tip area. Due to its 

modular and energy-based feature, the proposed framework offers a general platform allowing 

embodiment of other control or energy harvesting elements into the model to guide ABH 

structural design for various applications. 

Meanwhile, manufacturing an ideally tailored power-law profile of a structure with an 

embedded ABH feature can hardly be achieved in practice. Past research showed that the 

inevitable truncation at the wedge tip of the structure can significantly weaken the expected 

ABH effect by creating wave reflections. On the premise of the minimum achievable truncation 

thickness by the current manufacturing technology, exploring ways to ensure and achieve a 

better ABH effect becomes important. Therefore, we investigate this issue by using this 
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developed model on an Euler-Bernoulli beam with a modified power-law profile and an 

extended platform of constant thickness [6]. The so-called extended platform is an add-on 

portion of the beam at the truncated ABH tip. Its thickness is the same as the truncated ABH tip 

thickness. Through comparisons with the conventional ABH profile in terms of system loss 

factor and energy distribution, numerical results show that the modified thickness profile brings 

about a systematic increase in the ABH effect at mid-to-high frequencies, especially when the 

truncation thickness is small and the power index m is large.  The use of an extended platform 

further increases the ABH effect to broaden the frequency band whilst providing room for 

catering to particular low frequency applications (shown in Fig. 2). 
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Fig. 1 Mode shape comparison between FEM and present approach when x0 =1 cm for (a) first 

mode, and (b) thirty-fifth mode. 

It is worthing pointing out that although the ABH effect exists as a broadband phenomenon 

based on wave propagation theory in structures of semi-infinite size, we demonstrate the 

disappearance of the ABH effect in a finite beam in specific frequency ranges above the cut-on 

frequency, both experimentally and theoretically (shown in Fig. 3) [7]. Analyses show that the 

phenomenon takes place at frequencies which are close to the low order local resonant 

frequencies of the beam portion, demarcated by the excitation point. These frequencies can be 

predicted so that the phenomenon can be avoided for the targeted frequency ranges in ABH 

applications. 
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Fig. 2 System loss factors (η) for three different beam cases with and without extended platform 

for damping layers of the same length applied. Case 1 has a conventional ABH profile; Case 2 

uses a modified thickness profile detailed in [6].  Lp is the length of the extended platform.  
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Fig. 3. (a) The mean quadratic velocity of the ABH part and (b) the ratio of mean quadratic 

velocity of the ABH part to that of the uniform beam part from experimental and numerical 

simulations. 

 

Finally the established model is extented to deal with a 1D lattice comprising peroidic ABH 

celles. Results show remarkable locally resonant band gaps [8] 
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1. Introduction 

 

 The standard approach to obtaining the natural frequencies and the corresponding 

eigenmodes of lumped-parameter systems is to solve the algebraic eigenvalue problem. In the 

natural vibration analysis of continua, nontrivial solutions of differential equations are sought, 

subject to appropriate boundary conditions. By this approach the solutions of any particular 

problem can be obtained in the most straightforward way. 

 A different method allowing the study of eigenvalue problems has been developed within the 

framework of the spectral theory of linear operators [1,2]. This theory deals with eigenvalue 

problems for linear operators, including the important case of operators with non-constant 

coefficients. The approach relies on the analysis of the resolvent, through the use of the theory 

of functions of complex variable. The spectral theory of linear operators can provide results that, 

for distributed-parameter systems, may be difficult to obtain by other methods. One of the 

advantages of this theory is that it offers a unified approach to the study of the character of the 

spectrum of linear operators. It provides an efficient means of analyzing whether the spectrum 

of a linear operator is discrete or continuous, with methods of finding in either case the spectral 

representation of the operator. For a discrete spectrum, which is encountered in the vibration 

analysis of continuous systems (as opposed to wave propagation problems), the theory can be 

used to justify the fact that the solutions of vibration problems can be expanded into series of 

natural vibration modes. 

 An important application of the spectral theory of linear operators is in perturbation analysis 

[3,4]. Unlike the approaches usually found in quantum mechanics books, the spectral method 

provides mathematically rigorous perturbation results for distributed parameter systems. Being 

of the analytical character, it also furnishes tools for investigating the convergence of the 

perturbation series. Moreover, the scope of application of spectral theory is broader than that 

covered in most physics books, since it is not limited to the case of self-adjoint operators. 

 The aim of the present study is to apply the abstract mathematical concepts described in 

Refs. [1  ̶ 4] to a simple example of a distributed-parameter vibrating system, with a view to 

making the theory better understandable. 

 

2. Spectral analysis of a rod with a spring at one end 

 

 The main elements of the natural vibration analysis using spectral theory will be illustrated 

by the longitudinal vibrations of a prismatic rod, fixed at the left end, with a spring acting on its 

other end. For this system, the eigenvalue problem, when written in non-dimensional form, is 

formulated as follows : 

 

  0)1()1(,0)0(,
2

2

 uuuu
dx

ud
x   (1) 

 

where: 
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Here: l is the length of the rod; AE,, are, respectively, the mass density, Young’s modulus and 

the rod cross-section area; k stands for the stiffness of the spring that acts on the right end of the 

rod;   is the circular frequency, u – the non-dimensional displacement along the rod axis, and 

10  x . Subscript x in the boundary condition denotes differentiation with respect to x. 

 The resolvent (as defined in Ref. [3]) of the problem in hand is an integral operator, with the 

kernel (Green’s function) given by the solution of the following differential equation: 

 

  )(
2

2

  xG
dx

Gd
 (3) 

with the boundary conditions: 

 

  0),;,1(),;,1(,0),;,0(   GGG x  (4) 

 

Dirac’s δ-function appears on the right-hand side of Eq. (3). The Green’s function, defined in 

the rectangular region 10,10  x , is given for x  by the formula: 
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For x one needs to interchange x and   in Eq. (5). The Green’s function is continuous 

when x , whereas its first derivative suffers a jump there. 

 Let us take the case with 0 , first. In this case, Green’s function (5) reduces to: 
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 The eigenvalues are obtained as the poles of (6). One can show, e.g., by expanding Green’s 

function (6) in series around 0 , that 0 is not a pole. The poles of (6) are simple and they 

satisfy the equation: ,2,1,0cos 2/1  kk The solutions k  are the eigenvalues of a fixed-free 

rod. 

 In order to find the eigenmodes, one needs to calculate the projection operator, given by the 

following expression [3]: 

 

     dvxGxPv
k

1

0

)();,(res)(  (7) 

 

where the residue at a simple pole is equal to: 
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Here, )(N and )(D denote, respectively, the numerator and denominator of Green’s function 

(6), and the comma stands for differentiation with respect to  . Result (8) is symmetrical with 

respect to the interchange of x and  , therefore the formula that defines the projector is valid 

both when x and x , irrespective of the ordering of x and  in the expression of Green’s 

function (6). 

By combining Eqs. (7) and (8) one obtains: 
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
   (9) 

 

It can be seen that projection (9) of an arbitrary function )(xv onto the eigenspace (which is one-

dimensional in our case) is proportional to the eigenvector xk
2/1sin , corresponding to 

eigenvalue k . In particular, when xCxv k
2/1sin)(  , where C is an arbitrary constant, the 

coefficient in the square brackets in Eq. (9) is equal to C, so that the eigenvector is not altered 

when projected onto the eigenspace of k . 

 Returning to the general case of a rod with a spring acting on its right end, setting the 

denominator of kernel (5) to be equal to zero, the characteristic equation of the rod with the 

spring is as follows: 

 

  0sincos 2/12/12/1    (10) 

 

The projection operator can be obtained in a way similar to that described for the case with no 

spring, and it can be brought to the following form: 
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where k is the k-th eigenvalue obtained from characteristic equation (10). 

 One of the important applications of this theory is the perturbation calculation of the 

eigenvalues and eigenvectors of linear operators. This will be discussed during the symposium, 

by treating the force from the spring as a perturbation term. It is to be noted that this 

perturbation appears in the boundary condition, rather than in the governing equation. When 

using the standard perturbation approach described in many physics books, some complications 

arise in such a case. That is the justification why this example has been chosen for the study. 

The analytical approach described above is capable of dealing with such a problem in  

a rigorous way. 

 

References 

 

[1] Dunford, N., and J.T.Schwartz, Linear Operators, Part I: General Theory, Interscience,  

 New York, 1958. 

[2] Lorch, E.R., Spectral Theory, Oxford University Press, New York, 1962. 

[3] Kato, T., Perturbation Theory for Linear Operators, Springer-Verlag, Berlin/Heidelberg/  

 New York, 2
nd

 ed., 1980. 

[4] Baumgärtel H., Analytic Perturbation Theory for Matrices and Operators, Akademie-

 Verlag, Berlin, 1984. 

ISVCS11

page  15 of 81.



ISVCS11, 11th International Symposium on Vibrations of Continuous Systems
Royal Victoria Hotel, Llanberis, Snowdonia, Wales, UK, July 16 - 21, 2017

Investigations on the Similitudes of Stiffened Cylinders

G. Petrone, S. De Rosa and F. Franco

pasta-lab, Laboratory for Promoting experiences in Aeronautical STructures and Acoustics
Department of Industrial Engineering, Aerospace Section

University of Napoli "Federico II", Via Claudio 21, 80125 Napoli, Italy
giuseppe.petrone@unina.it, sergio.derosa@unina.it, francesco.franco@unina.it

Abstract

Scaling laws provide the relationship between a full-scale structure and its scaled models. They
can be used to extrapolate the experimental data from a small, inexpensive, and easy to be tested
model into design information for the full -scale structure.

In some engineering fields, like in the aerospace or naval ones where the structures are huge,
practical applications of scaled down models are suitable and the importance of establishing a
similarity and finding proper scaling laws is evident, [1]-[4].

This work presents an investigation on the definition and applicability of distorted similitudes
and the related scaling laws for the analysis of the dynamic response of stiffened cylinders. Such
responses are determined from a generalization of the modal approach, which allows the use of the
mode shapes and natural frequencies to establish the proper scaling laws. The complete procedure
is named SAMSARA (Similitude and Asymptotic Models for Structural Acoustic Research and
Applications).

The previous theoretical and numerical studies, based on Modal Analysis, Finite Element Ap-
proach and Energy Distribution Approach, allowed to use modal sets to produce both the original
and distorted forced responses for a class of test-cases: the sequence of works is from [5] to [12].

Important experimental evidences for the vibroacoustic response of plates are already available to
demonstrate the feasibility of pursued approach [10] and [12]. Recently, the problem of random
excitation has been analyzed, [13]. Also the preliminary analytical investigations for the cylinders
were successful [9]. To highlight the opportunities offered by the similitudes, the laboratory tests
are considered an unavoidable successive step. The identification of the principal scaling laws can
be a difficult step as consequence of the large number of design parameters in stiffened cylindrical
shells; some limitations of the similitude relationships may be encountered during the design of
parent (small-scale) stiffened shells.

Thus, having in mind to apply the laws defined in [9], two classes of stiffened cylinders (indicating
as A and B), consisting of 6 rectangular-shaped ribs and 5 square-shaped stringers, are investigated,
Table 1. The cylinders are made of aluminium: E = 70 GPa, µ = 0.33, ρ = 2750 kg/m3. The A
and B test-articles indicate the two reference cylinders and A1, A2, B1 and B2 are the avatars, that
is the cylinders in distorted similitude. Article C one is an attempt to find a sort of intermediate
configuration between A and B test-articles. The aim is to use Ai and Bi to recover the forced
response of A and B ones. The response of C will be carefully investigated to recover A and B:
this will be the most challenging goal. In particular, the B test-article has a tube configuration; on
the contrary, in the A one, the circular shape prevails.

Preliminary numerical models and investigations of the cited cylinders are performed and several
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Table 1: Cylinders
label A A1 A2 B B1 B2 C

mm
lenght 2500 1250 1250 2500 1250 1250 850
diameter 1000 500 500 400 200 200 400
skin thickness 2 2 2 1 1 1 1
area mm2

long. stiffener 10 × 10 10 × 10 10 × 5 10 × 10 10 × 10 10 × 5 10 × 10
circ. stiffener 30 × 10 30 × 10 30 × 15 30 × 10 30 × 10 15 × 10 30 × 10

considerations, useful for the best use of the experimental tests, are acquired. It is verified with
a replica (i.e. a domain whose dimensions are scaled according a unique similitude rate) that it
is always possible to switch from the original model to the parent model and vice-versa. In this
sense, the terms ’original’ and ’parent’ are interchangeable. On the other hand, in the case of
distorted parents, the distribution of natural frequencies is altered and only a partial similitude is
achieved. It has, thus, tested the use at same time of more than a single scaling law; these scaling
laws are tailored on several frequency ranges. For the replica, the response is correctly obtained
applying just a single scaling law, as expected.

The experimental test bench is set-up in order to facilitate the cross correlation with the numerical
models. The cylinders under investigation are suspended on a rigid support through elastic strings,
simulating the free-free conditions. The point excitation (white noise signal) is provided onto a
face of the panel by means of a shaker (Modal Shop 2100E11), connected to the structure through
a stinger (in order to apply the force as much as possible perpendicular to the surface). Five
accelerometers - PCB 333B32 - are used to measure the response over the surface of the cylinders,
changing their position along the experimental mesh (Fig. 1). The data are recorded using the
LMS SCADAS III acquisition system, in the bandwidth 0 – 1024 Hz with a frequency resolution
1 Hz; thus, data are analyzed by using LMS Test.Lab 8.B and Matlab.

The first experimental phase consists on the numerical model up-dates. In fact, the matching
between the experimental data and the numerical models is the basic step for the successive simil-
itude analyses: the agreement and/or the assessment of the differences among the data help the
successive development of the similitude laws for the stiffened cylinders. In fact, the similitude
laws are based on some hypotheses about the mechanical behaviour of the cylinders. The range of
validity of these hypotheses can be assessed trough the experimental data.
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Figure 1: (Left) Details of the interior of cylinder A. (Right) Test set-up for the forced response of
the cylinder A.
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Abstract 

Axially moving systems and rotating rings are taken as representations of gyroscopic continua. 

These motional continua are common constituent elements in many machine systems. Large 

unwanted vibration due to the presence of the motion speed seriously affects the system 

performance, accuracy and safe operation. In this work, the necessity of the Timoshenko beam 

theory is studied for modeling gyroscopic continua. Free vibration of a rotating ring supported 

by an elastic foundation is studied by analytical method, finite element (FE) simulation and 

experiment. By adopting the ring analogy of Timoshenko beam theory, the nonlinear vibration 

of the rotating ring on an elastic foundation is modeled based on Hamilton's principle. By 

solving the generalized eigenvalue problem, natural frequencies and flexural modes are 

obtained. Moreover, generalized boundary conditions are proposed for the axially moving beam. 

This generalized boundary constraint can represent all states between the classical boundary 

conditions. Dynamic stiffness matrixes are created for moving Timoshenko beams and Euler-

Bernoulli (E-B) beams with generalized boundary conditions. The validity and utility of the 

dynamic stiffness method is demonstrated by using numerical simulations. Furthermore, 

Timoshenko beam theory is applied to study free vibration of high-speed axially moving 

continua. The weighted residual method (WRM) is employed to solve natural frequencies, 

which are verified by using the discrete Fourier transform (DFT). For determining the necessity 

of the Timoshenko theory, the flexural vibration frequencies from two theories are compared. 

Some interesting conclusions are drawn. 

1. Introduction 

Many researchers and engineers have paid attention to vibration characteristics of the rotating 

rings. If thick rings are considered, however, the ring analog of Timoshenko beam theory is 

necessary to obtain accurate results. Thick rings are widely used in engineering systems. 

Although the effects of shear deformation and rotational inertia on the free vibration of the a 

rotating ring have been proved, use of the Timoshenko theory for the vibration of a rotating ring 

resting on an elastic foundation still has not been investigated. 

One important problem in the axially moving systems is the occurrence of significant and 

unwanted resonance. In order to determine when the resonance will occur and the intensity of 

the resonance, the dynamics of axially moving beams have been widely studied for many 

decades [1,2]. The dynamic stiffness matrix was introduced for the free transverse vibration of 

an axially transporting E-B beam [3] and Timoshenko beam [4] with classical boundary 

conditions. In practical engineering applications,, the boundary of an axially transporting 

continuum is less likely to strictly satisfy those classical constraints, such as strictly simply 

supported, or completely fixed or clamped. More likely the boundary conditions will be 

somewhere between these strict constraints. The generalized boundary conditions are adopted 
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for studying the vibration characteristics of transporting beams for the first time using either an 

Euler Beam or Timoshenko Beam model. 

The free vibration of the transporting systems at super-critical speed have been studied by the E-

B beam theory [5]. The effects of shear force and rotary inertia on the free vibration of the 

super-critical transporting systems have not been discovered. In other words, the Timoshenko 

beam theory has not been applied to study the vibration of super-critical transporting systems. 

2. Equations of Motion 

As shown in Figure 1, a rotating elastic ring on an elastic foundation and an axially moving 

beam with general constraint support boundary conditions are established. The ring and beam 

are both uniform. In Figure 1(a), the ring rotates at a constant speed Ω . The rectangular cross-

section has radial thickness h and the axial width b. k  and kr are, respectively, the elastic 

foundation stiffnesses in the tangential and radial directions. The symbols  ,u t  and  ,v t  

represent the radial and tangential deformations, respectively. ϕ(x, t) is the slope of the deflection 

curve due to bending deformation of the ring.   is the density of the ring and E denotes the elastic 

modulus.   is the coordinate, 0 2   . This basis rotates at speed Ω . R represents the radius 

of the ring from the center to the neutral line. In Figure 1(b), L is the length of the beam between 

two ends. v(x,t) is the transverse vibration displacement, where x and t stand for the distance 

from the left end of the beam and the time coordinates, respectively. Γ and P0 are the axially 

constant speed and initial axial tension of the transporting beam, respectively. The ends of the 

beam are supported by vertical springs and constrained by torsion springs. KL and KR are the 

spring stiffness coefficients of the vertical elastic support at the left and right ends of the beam, 

respectively. Kt1 and Kt2 are the torsion spring stiffness coefficients at the ends.  

 
(a) a rotating ring on an elastic foundation                        (b)  an axially moving beam 

Figure 1. Model of a gyroscopic continua. 

The non-dimensional equations of the motion of the ring and the axially moving beam with 

Timoshenko theory have been omitted but will be presented at the symposium. 
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(a) the second order mode                               (b) the third order mode 

Figure 2. Comparison of the natural frequencies of Timoshenko and E-B models changing with 

the radial height of the ring 
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The effects of the ratio of radial thickness to the ring radius are shown in Figure 2. The 

differences between the two ring models emerge with greater increase in the ratio. Indeed, 

higher order eigenvalues could be totally different for a large thickness-to-radius ratio, no matter 

whether the ring is stationary or rotating. Interestingly, Figure 3 demonstrates that the vertical 

spring does not change the critical speed of the moving beam. The effects of the vertical spring 

stiffness on the E-B beam are larger than for the Timoshenko beam. The difference decreases 

with the increasing vertical spring stiffness for the first order natural frequency. 
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Figure 3. Comparisons of the transporting Timoshenko beam model and E-B beam model 

versus the axial speed and the vertical spring stiffness 
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Figure 4. Comparisons of the transporting Timoshenko beam model and E-B beam model 

versus the axial speed and the vertical spring stiffness 

Figure 4 illustrates that the second natural frequency of the super-critical vibration from the 

moving Timoshenko beam theory is much smaller. The fundamental frequency from the moving 

Euler-Bernoulli beam is smaller than that of the Timoshenko beam theory near the critical 

speed. 
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Abstract 

The vibration analysis of plates is a widely researched area. In many cases, plates with cutouts 

find a practical use to fulfill requirements of lightweight and dynamic performance. Cutouts can 

also provide functional access and ventilation or they may occur as damage during service life. 

A large amount of literature has been devoted to analysis of rectangular plates with cutouts of 

different shapes ranging from rectangular and polygonal cutouts to round, elliptical, and 

polygonal ones, as are reviewed in [1]. 

 

Starting from the equations of motion of an isotropic rectangular plate we have 

 

      (1) 

We assume a solution in the following form: 

  (2) 

  

With  

 
And 
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Using this assumed solution one can find all the unknown parameters for given set of known 

conditions for deflection, slope, shear, and moment along the four edges, or from the continuity 

condition for these quantities on the border of neighboring plates. The calculation of the natural 

frequencies is done by finding the value of frequency for which a zero value of load on the plate 

will generate infinite deflection, using the method presented in Ref. [1]. 

 

For a simply-supported plate with a square cutout as shown in the figure, with a= 0.5 the first 4 

normalized natural frequencies and the modes shapes were calculated and given below. The 

values of the natural frequencies are compared with the results from Ref. [2]. 
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Figure 1: square plate with a square cutout, a = 0.4 
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Figure 2: The first 4 mode shapes and normalized frequencies for the plate in Figure 1. 
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This presentation is dedicated to the memory of the late Jim Hutchinson, the past keeper-of-all-knowledge in the realm of 

beam shear coefficients, and with whom I never took the opportunity to share the results reported here. 

 

Introduction 

In two previous Symposia, Jim Hutchinson discussed the appropriate selection of shear coefficients 

for Timoshenko beams of thin-walled [1] and rectangular [2] cross-section, both inspired by his  classic 

2001 paper on shear coefficients [3].  While these two presentations may have seemed to “close the 

door” on future discussion on shear coefficients, there is a class of thin-walled “beams” not covered 

previously:  the beam representation of thin, shallow, rectangular-planform shells.  Such shells were 

considered using the author’s 6th order vibration beam model [4], characterized by explicit, though not 

exact, inclusion of bending warping, torsion warping and anticlastic bending effects—both flexibility 

and restraint. 

 

Beam Model 

The (symmetric) beam vibration model is based on the two-degree of freedom, symmetric Timoshenko 

model, with the dependent variables uBS(z), the total lateral deflection (due to bending and shear) in 

the x-direction and ψx(z), the associated bending slope. To this model is added the bending warping 

parameter, ϒx(z), which gives the axial warping deflection, (χ + xy2)ϒx(z), where χ is the St. Venant 

bending warping function, a function of the cross-section shape.  After forming the energy functionals 

and  using Hamilton’s principle, the 6th order relationship emerges as three, coupled 2nd order 

differential equations of motion: 

 

𝐺[Λ4𝛾𝑥
′ + 𝐴(𝑢𝐵𝑆 − 𝜓𝑥

′ )] − 𝜌𝐴𝑢̈𝐵𝑆 = 0 

𝐸[𝐼𝑦𝑦𝜓"𝑥-Λ1γ"x] + 𝐺[Λ4𝛾𝑥 + 𝐴(𝑢′
𝐵𝑆 − 𝜓𝑥)] − 𝜌[𝐼𝑦𝑦𝜓̈𝑥-Λ1𝛾̈x] = 0                            (1) 

𝐸[Λ1𝜓"𝑥-Λ2γ"x] + 𝐺[Λ3𝛾𝑥 + Λ4(𝑢′
𝐵𝑆 − 𝜓𝑥)] − 𝜌[Λ1𝜓̈𝑥-Λ2𝛾̈x] = 0 

 

with area-constants 

Λ1 =  ∬ 𝑥(𝜒 + 𝑥𝑦2)𝑑𝐴
𝐴

 

Λ2 =  ∬ (𝜒 + 𝑥𝑦2)2𝑑𝐴
𝐴

 

Λ3 = ∬ {[
𝑑

𝑑𝑥𝐴

(𝜒 + 𝑥𝑦2)]2 + [
𝑑

𝑑𝑦
(𝜒 + 𝑥𝑦2)]2} 𝑑𝐴 

 Λ4 = ∬ [
𝑑

𝑑𝑥𝐴
(𝜒 + 𝑥𝑦2)]𝑑𝐴                           (2) 

 

For a cantilever beam for the case of total end fixity, 𝑢𝐵𝑆(0) = 𝜓𝑥(0) = 𝛾𝑥(0) = 0, 

the 3 boundary conditions at the free end emerge as: 

 

𝐴(𝑢′𝐵𝑆 − 𝜓𝑥) + Λ4𝛾𝑥 = 0 

                                                            𝐼𝑦𝑦𝜓′
𝑥

− Λ1𝛾′
𝑥

= 0                                                       (3) 

Λ1𝜓′
𝑥

− Λ2𝛾′
𝑥

= 0 
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This model has been compared with the theories of Cowper [5] who proposed a rational expression 

for shear coefficients, which characterize cross-section shear deformation, and Levinson [6], who 

proposed the consideration of cross-section bending warping deformation.  Cowper proposed a 

shear coefficient for thin-walled cross-sections which has been used in the current study of curved 

shells (and very similar to the formulation by Hutchinson): 

 

𝑘 =
2(1 + 𝜐)𝐼𝑦𝑦

𝜐
2 (𝐼𝑥𝑥 − 𝐼𝑦𝑦) −

𝐴

𝐼𝑦𝑦 ∬ 𝑥(𝜒 + 𝑥𝑦2)𝑑𝐴
𝐴

 

 

Results for a thin-walled cantilever beam with a curtate circular sector cross-section 

The geometry of the thin-walled beam in question is shown below, left.  The shear coefficients for 

a range  of physical parameters is shown below in Table 1, below, right.  Note the very small values 

of shear coefficient for deeper, thin shells. 

 

Table 1. Shear coeffiecients for curtate 

circular sector sections after Cowper (υ = 0.3).     

 

 

 

 

 

 

Figure 1 .  Geometry for the thin-walled ”beam”. 

 

For rather thick shells (b/h~1), the predicted non-dimensional natural frequency results based on 

Cowper’s, Levinson’s and the author’s beam model (which requires no shear coefficient) match 

very well (but, are not given here).   

 

But, for thin and deep shells, e.g., b/h = 20 and b/R = 0.1, the very small values of the shear 

coefficient corresponds to an increase in flexibility, which results in a decrease in natural 

frequency. This makes a significant difference for beam bending vibration (about the minimum 

principal axis) especially in the case of a very low aspect ratio, a/b, as is apparent in Table 2.  

Therein, a comparison is made between shell theory [7] and Timoshenko beam theory (which 

includes rotary intertia, along with shear deformantion). For instance, for the deeper shells, b/h = 

0.5, the fundamental frequency results using the Cowper shear coefficient more closely match the 

results from shell theory, whereas not using the correct shear coefficient results in a beam which 

is too stiff for b/R > 0.1.  On the other hand, for the 2nd mode, using the “correct”, very small shear 

coefficient, results in frequencies which are uniformly low, and for the case of a/b = ½, are 

substantially low—which one should expect, considering the lateral bending restraint in a shell, 

which a beam model cannot accommodate. As such, using beam theory in such cases is ill-advised. 

b/R b/h=20 b/h=5 b/h=1 

0.01 0.814 0.846 0.850 

0.1 0.174 0.839 0.850 

0.3 0.0509 0.789 0.845 

0.5 0.0510 0.710 0.837 
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Table 2.  Comparison of 𝜔𝑎2√𝜌ℎ
𝐷⁄  between shell and beam theory 

 for thin (b/h = 20) circular cylindrical shells with a/b = 1 and 0.5. 

a/b b/R Shell [7] 
 Timoshenko beam [8] 

k = 0.85 k (Cowper) 

 

 

1 

0.1 3.561 3.456 3.435 

21.48 21.39 20.55 

0.3 4.181 4.229 4.081 

22.76 26.01 21.27 

0.5 5.168 5.484 5.172 

24.66 33.33 24.77 

 

 

0.5 

0.1 3.541 3.434 3.354 

21.88 20.53 17.97 

0.3 3.829 4.18 3.684 

22.12 24.51 14.92 

0.5 4.461 5.400 4.423 

22.58 30.34 16.20 

 

Conclusion 

As shown by Hutchinson, the use of shear coefficients in bending vibration, especially at high 

frequencies (small wavelengths) requires the right shear coefficient.  Further, as noted here, having 

the right shear coefficient for beam representations of the thin, shallow shell becomes increasingly 

important for estimating the fundamental vibration frequency as aspect ratio decreases.  However, 

for higher modes, a beam model completely fails—as one should expect. 
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Abstract

In this paper, the dynamics of rotors has been evaluated using refined one-dimensional finite el-
ements developed within the framework of the Carrera UnifiedFormulation (CUF) and charac-
terized by a node-dependent kinematics. The CUF formalism enables one to express the primary
variables (the three displacement components) with an arbitrary number of products,M, of the
cross-sectional functions, Fτ (x,z), and the generalized displacement vectoruτ (y,t). Such a vector
can be, in turn, approximated using the classical shape functions, Ni(y), of the Finite Element
Method (FEM), and the nodal displacement vector,qiτ (t)

u = Fτ(x,z)Ni(y)qiτ(t) τ = 1, ...,M (1)

The subscripti of Equation (1) ranges from 1 to the maximum number of nodes ofthe adopted 1D
element, which can beNn= 2, 3 or 4. According to the node-dependent technique [1], Equation (1)
can be particularized for each beam node by modifying eitherthe number or the type of functions
Fτ(x,z). For example, let consider a 2-node beam element as shown in Figure 1.

1 2

Fτ
1

Fτ

2

N1 N2

y

u(y)=N1 (y) F1
τ+ N2(y) F2

τ

Figure 1: Displacement field of a node-dependent kinematic beam element.

The displacement field corresponding to the node 1 can be written as

u1 = u1τ F1
τ , τ = 1. . .M1 (2)

while, the kinematics of the second node is

u2 = u2τ F2
τ , τ = 1. . .M2 (3)
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A linear combination of Equations (2) and (3) provides the displacement field of the whole refined
beam element as it follows

u = u1τ N1F1
τ +u2τ N2F2

τ , τ = 1. . .Mi (4)

In this work, Taylor (TE) and Lagrange (LE) expansions have been used to express the cross-
sectional kinematics [2]. For instance, if a first-order Taylor expansion (TE-1) is adopted at the
first node, and a 4-node Lagrange element (LE4) is used at the second node, Equation (4) reduces
to

u = N1
[
u1

1+u1
2x+u1

3z
]

︸ ︷︷ ︸

1st node

+N2
[
u2

1L1+u2
2L2+u2

3L3+u2
4L4

]

︸ ︷︷ ︸

2ndnode

Therefore, the displacement field of the 1D-CUF element witha node-dependent kinematics can
be written, in a general way, as it follows

u = uiτ Ni(y)F
i

τ(x,z), τ = 1. . .Mi; i = 1. . .Nn. (5)

Equation (5) is introduced in the expressions of the potential and kinetic energies of a structure
that is rotating about its longitudinal axis [3]. The application of the Hamilton’s principle leads to
the following equilibrium equations

KTOT u+GΩu̇+Mü = F (6)

whereKTOT includes the stiffness elastic matrix and other contributions due to the rotation (spin
softening, convective and geometrical stiffness matrix),GΩ is the Coriolis or gyroscopic matrix
depending on which reference frame has been used,M is the mass matrix, andF is the vector of the
centrifugal force. It is noteworthy that the system 6 has been derived in a fully three-dimensional
fashion. The possibility of modifying the number and the nature of the kinematics only at defined
regions makes the node-dependent approach appears very effective when rotors are constituted
of components with different deformability such as compactshafts and disks. To validate the
current approach, the rotor shown in Figure 2 has been considered. The geometrical and material
properties can be found in [3].

Figure 3 shows the Campbell diagrams obtained using a full LEmodel presented in [3], the
reference solution proposed in [4], and the node-dependentmodel TE2-2/LE. According to this
mathematical model, the kinematics of the compact shaft hasbeen approximated using a second-
order Taylor expansion, while the displacement field related to the disk has been conceived using
Lagrange-type elements.

It can be observed that the three solutions strongly agree each other. However, the node-dependent
approach required a lower number of degrees of freedom with respect to the full Lagrange ap-
proach.
More details about the application of CUF to rotordynamics,and results from a wider range of
problems will be provided during the11th International Symposium on Vibrations of Continuous
Systems.
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Figure 2: Sketch of the rotor.
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Figure 3: Frequencies vs. spin speed for a rotating disc on a flexible shaft.
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 Abstract 

In the wood processing industry circular saws are widely used in the breakdown of logs to boards 

of varying dimensions. These circular saws are primarily of two types: a) collared saws; and b) 

splined arbor saws (Figure 1).  

In a collared saw the blade is rigidly fixed to the driving arbor whereas in a splined saw the inner 

radius of the blade is splined and matches a splined arbor that provides the driving torque for the 

saw. Lateral constraint for guided saws is provided by space fixed guide pads which constrain 

the lateral motion of the saw. The maximum cutting speed for a collared saw is determined by 

the lowest critical speed of the rotating disk whereas the splined saw is able to operate at speeds 

in excess of the lowest critical speed.  

This paper presents a stability analysis of a spinning disk (an idealized representation of the saw) 

for both saw types, when subjected to radial and tangential in plane forces. This analysis contains 

an evaluation of the energy transfer from the applied loads to the disk vibrations and is used to 

examine the role of critical system components on the development of instability.  

  

Figure 1. Schematic of Guided Spline Saw (left), and Clamped Saw (right) 

The works by Chen J.S. [1-4] appear to be the first thorough investigation, concerning the effect 

of in-plane edge- loads on the natural frequencies of a spinning disk clamped at the inner radius. 

He concluded that compressive, and conservative in-plane edge-loads result in instability of the 

clamped disk at critical speeds. In an independent study, Shen [5] predicted the stability 
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characteristics of a clamped spinning disk subjected to a stationary concentrated in-plane edge 

load. Recently, Mohammadpanah and Hutton [6-8] discuss the stability of a guided splined disk. 

They concluded that maximum stable operation speed of a guided splined saw is its flutter 

instability speed.  

The following analysis considers the role of the cutting forces (Figure 2, left) on the stability of 

the system.  

The in-plane radial force 𝐹𝑟 and the in-plane tangential force 𝐹𝑡, and the lateral force 𝐹𝑙  acting 

on the outer edge of the disk and the interaction loads on the inner edge of the disk are shown in 

Figure 2.  

 

Figure 2. Schematic of Disk Subjected to In-Plane Edge Loads, and Their Inner Interaction Loads 

In general the rate of work done by a conservative load can be written as [6]: 

PFr at Outer Edge = Fr
∂w

∂r
(b, α, t). V(b, α, t)            (1) 

 

Figure 3. The Transverse Component of Radial Load 

Where 𝐹𝑟 .
𝜕𝑤

𝜕𝑟
 is the transverse component of the edge load, and  V(b, α, t)  is the transverse 

velocity of the disk at the point of load application. The work done by this force is found by the 

integration of Eq. 1 during one complete revolution of the disk. Following the same logic, the 

rate of work done by applied forces and the inner splined interaction forces can be expressed as 

in Eq. 2:  

Ptotal = Fr
∂w

∂r
(b, α, t). V(b, α, t)+Ft

∂w

b.∂θ
(b, α, t). V(b, α, t)+ Fl. V(b, α, t) + Fr

∂w

∂r
(a, α, t). V(a, α, t) 

+
a+b

2a
Ft

∂w

a.∂θ
(a, α, t). V(a, α, t)+ 

b−a

2a
Ft

∂w

a.∂θ
(a, α + π, t). V(a, α + π, t)                     (2) 
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As an example consider a clamped and a splined disk of  𝐼𝑛𝑛𝑒𝑟 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 =  8 𝑖𝑛  (200𝑚𝑚), 

𝑂𝑢𝑡𝑒𝑟 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 =  28 𝑖𝑛 (700𝑚𝑚),  𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 =  0.110 𝑖𝑛    (2.8𝑚𝑚) ; and  subjected to the 

forces:Fr= 100N, Ft= 1000N, and 𝐹𝑙= 5N. The rate of work done by in-plane edge loads for the 

clamped disk, and the splined disk at critical, super critical, and flutter speeds are computed and 

shown in Figure 3. 

  
Figure 3. The rate of work done by in-plane edge loads for a clamped disk (left), and 

Splined disk (right) 

Comparing the rate of work done by the applied in-plane loads, at the critical speed Ω𝑐𝑟,  indicates that 

for a clamped disk, it is positive, and it is zero for a splined disk. The rate of work is positive at flutter 

speed for both clamped and splined disk.  

In conclusion, the rate of work (the energy induced into the system) by in-plane loads is positive at 

critical (divergence instability) speeds and at flutter instability speeds for a clamped disk. The rate of 

work (the energy induced to the system) by in-plane loads is only positive at flutter instability speeds for 

a splined disk. Therefore, a clamped saw cannot be operated at critical speeds, while operation of a 

splined saw is possible up to its flutter instability speed.  
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Motivation 

While the use of frequency measurements as a means of identifying cracks in a structure has 

continued to remain a topic of interest for researchers [1-3], it has still not led to a practical way 

to achieve this, even in laboratory experiments[4]. The reasons for the challenges in 

implementing this idea include the difficulty in measuring the small changes in the frequency 

due to the cracks, the lack of a simple way to solve the inverse problem of identifying cracks 

severity and location, the possibility of multiple cracks which makes the inverse problem even 

more challenging [5]. In an effort to amplify the effect of the crack on the natural frequencies, 

Zhong and Oyadiji [6], [7-9] used a roving mass. This resulted in a change in the slope of 

frequency vs potential crack location plot. Here we explore the use of a roving body possessing 

inertia and show that as the roving body passes a crack, an abrupt jump in the frequency 

spectrum can be generally expected. The reason for this assumption is based in the 

representation of an open crack as a means of slope discontinuity, the inertial property included 

in the roving mass acts as an amplification element for the mentioned slope discontinuity; the 

following section will provide a proof to this assumption and present the special case when the 

amplification effect will not be achieved. 

 

Proof 

Consider two substructures formed by splitting a 

structure Ac at a crack location into two component 

structures, with the possibility of two thin rigid bodies 

attached to the crack end of each substructure, 

representing two roving bodies as shown in Fig.1 We 

will only have a single roving body but to obtain the 

results for two possible locations (to the left side or 

the right side of the crack) it is convenient to include 

two bodies and eliminate one in each special case. 

 

The internal shear forces and bending moment are 

given by F and M on the left side of the crack and F and M on the right side of the crack. By 

Newton’s third law, these actions will be equal and opposite, noting that the crack effect 

represented by a rotational spring does not introduce a discontinuity in moment. Then for the 

substructures on the left side and the right side of the crack the following DSM equation can be 

derived: 

F,  

M,  

Figure 1. Structure AC 

-M,  

-F,  

m1, I1 m2, I2 
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       (1) 

      (2) 

Adding the above equations gives: 

   (3) 

But,           (4) 

Substituting Eq. (4) into the second row of eq. (2) gives: 

    

Rearranging gives:      (5) 

Combining Eqns. (3) and (5) and subtracting the third row from the second row gives the 

following equation with a symmetric matrix: 

 (6) 

This is the Dynamic Stiffness Matrix equation for the structure with a crack carrying two bodies 

on either side of the crack. The roots of the determinant of the above matrix gives the square of 

the natural frequencies.  

Consider the case of the roving bodies without any rotary inertia. Setting , the 

determinantal equation for the combined structure becomes: 

     (7) 

It may be seen that setting   gives the same expression as setting  

. This means whether a roving mass without rotational inertia is on the left 

of the crack or the right of the crack, the natural frequencies and modes will not change. This is 

understandable as the crack model being used only permits a relative rotation between the two 

sides and the imposition of a translatory inertia (mass) immediately adjacent to a crack will have 

the same effect irrespective of which side it is located. This is not true, when it comes to 

placement of a rotary inertia, as can be seen from the following derivations. 

For the case of   

 
 

For the case of   

 
 

The change in the expression for the determinant as the roving body passes through the 

determinant is given by: 

    (8) 

This means that the roots of the determinantal equation would change suddenly as the roving 

body passes the crack location, unless  (or if  which may have no practical 

meaning) and . This special case would correspond to a crack being located at a point on 

an axis of structural symmetry. The loss of continuity in the measured frequency as can be seen 

in Eq.(8) depends mainly of the relative position of the crack which changes the dynamic values 

of the matrix; regarding to the magnification effect it can be noted from Eq.(8) its dependency 

of the inertial values of the roving mass. 
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The natural frequencies will, in general, change abruptly as a thin roving body possessing inertia 

passes a crack. It can be easily explained that this abrupt frequency shift will occur at each crack 

location allowing the crack location identification even for a multi-cracked structure. 

 

Concluding remarks 

Using the Dynamic Stiffness Matrix method, it has been shown that the natural frequencies of a 

skeletal structure with a crack represented by a joint with rotational flexibility carrying a thin 

roving body possessing rotary inertia will change abruptly as the body passes a crack location. 

The discontinuity in the natural frequencies versus mass location could indicate a crack location 

and therefore could possibly be used as a method of damage identification. Numerical 

experiments show that the magnitude of the discontinuity in the frequency increases with 

increasing mode number which can be explained by the fact that the inertial moment that affects 

the vibration is proportional to the square of the frequency. It has also been noted that the shifts 

in the lower frequencies are relatively small and a cumulative frequency parameter based on the 

shifts in more than one mode may be a better indicator of the crack location compared to the 

shift in a single frequency value. Experimental work is required to test the feasibility of using 

this idea in practice. 
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Abstract 

In the exact strip method, vibration modes of a prismatic plate assembly take the form 

  

     txyWtyxw m

m

m  siniexp),,(   
(1)  

 

where   is an undamped natural frequency, t  is time, m  are a series of half-wavelengths of 

response in the longitudinal ( x ) direction and the functions  yWm  are obtained from exact 

solutions of the governing differential equations in the transverse ( y ) direction. A single m  

suffices for orthotropic plate assemblies with simply supported ends carrying no shear load [1]. 

Otherwise a series solution is required, the end conditions being modelled by point supports [2]. 

Natural frequencies are found by assembling a dynamic stiffness matrix which accounts exactly 

for the continuous distribution of mass, and applying the Wittrick-Williams algorithm [3]. 

 

Figure 1(a) shows a plate containing a through-the-length region of reduced stiffness, e.g. due to 

a reduction in thickness, a degradation in material properties or a delamination [4]. Figure 1(b) 

shows a plate with a longitudinal crack, which may be represented by a rotational spring by 

analogy with a cracked beam running in the y  direction [5]. These types of damage can be 

modelled directly because the plate remains prismatic. The following sections outline methods 

to model the non-prismatic types of damage illustrated in Figures 1(c, d), as well as vibration-

based methods to detect damage in plate assemblies. 

 

 

 

 

 

 

 

 

 

Figure 1. Plates containing (a) through-the-length region of reduced stiffness, (b) longitudinal 

crack, (c) embedded region of reduced stiffness, (d) crack of arbitrary length and alignment.  
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Modelling embedded regions of reduced stiffness 

A composite plate containing an embedded rectangular delamination, illustrated in Figure 1(c), 

has previously been modelled using a smearing method [6] in which the dynamic stiffness 

matrix of the damaged strip for half-wavelength m  is given by 

 

    mmmm kKKK . (2)  

 

where mK  and mk  are the dynamic stiffness matrices of its undamaged and damaged regions, 

respectively,   is the fraction of the length over which the damage occurs and   is a 

correction term which allows for the longitudinal position of the damage. This method is 

computationally efficient and gives accurate results for natural frequencies, but because of the 

smearing it is unable to capture local effects in the vibration modes. 

 

An alternative approach [7] is to couple a finite element model for the damaged strip with an 

exact strip model for the rest of the structure. The finite element model is not restricted to 

prismatic structures, and can therefore include elements of different thickness and material 

properties, e.g. to represent portions above and below a delamination. The two models are 

coupled by point constraints which ensure that the displacements and rotations of the finite 

element nodes along the longitudinal edges of the damaged strip match those in the exact strip 

model. Natural frequencies, found iteratively using the Wittrick-Williams algorithm, and the 

corresponding mode shapes agree well with those obtained by a commercial finite element code. 

Modelling cracks of arbitrary length and alignment 

Plates containing cracks of arbitrary length and alignment, illustrated in Figure 1(d), may 

similarly be modelled by coupling a finite element model for the damaged strip with an exact 

strip model for the rest of the structure. Figure 2 shows a typical element through which the 

crack passes. The compliance of the rotational spring is resolved into components in the x  and 

y  directions acting at the mid-point ( cc yx , ) of the portion of the crack within the element, 

which are then apportioned to the four nodes of the element. Some numerical results will be 

presented at the Symposium and compared with those from a conventional finite element model. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Finite element containing a crack of arbitrary length and alignment. 
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Detection of damage in plate assemblies 

Structural damage can be identified non-destructively by measuring changes in the natural 

frequencies which, unlike modal changes, do not require a scan of the whole structure. For a 

single occurrence of damage, normalisation of the natural frequency changes gives a damage 

vector δ  which is independent of damage severity so that the location is found by solving an 

inverse problem. For frame structures this amounts to a one-dimensional search along each 

member, optionally allowing for noise in the natural frequency measurements [8]. 

 

For plate assemblies with a single occurrence of damage, δ  is also independent of damage 

severity, e.g. the area of a delamination or the length and depth of a crack. The through-

thickness position of a delamination affects the reduced stiffness mk  in Equation (2), while the 

longitudinal position affects the correction term  . Thus these are equivalent to size effects so 

that the transverse location can be found by a one-dimensional search across each plate. Similar 

arguments apply to cracks, suggesting that the damage can only be located uniquely in the 

transverse direction along with a generic description of its severity. 

 

If there are multiple occurrences of damage, a multi-dimensional inverse problem must be 

solved. The search procedure can be adapted to decouple the severity and location effects, and 

some preliminary results will be presented at the Symposium. 
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Abstract

The free vibration of plates is a historical problem for over two centuries which has given birth
to many fundamental methods like the Rayleigh and the Ritz methods. This problem has also
been a standard benchmark for many other analytical and numerical methods. However, the exact
solutions for the problem are available only for Navier or Levy-type plates where at least one pair
of opposite edges must be simply and/or guided supported. One method in this type is the dynamic
stiffness method (DSM) which gives exact dynamic solutions within the whole frequency range
of interest, which can be used as benchmark solutions for other methods. However, the DSM
is seriously restricted to prismatic plate assemblies with the assumption that two opposite sides
of each plate component must be simply supported, which prevents the DSM applications in a
wider context. In order to remove the above restrictions and at the same time remain the merits
(exactness and super efficiency) of the DSM, this paper will introduce a newly developed method
called the spectral dynamic stiffness method (SDSM) [1–5] which accounts for both prismatic and
non-prismatic plate assemblies with any arbitrary classical [1–3] and non-classical [4, 5] boundary
conditions. The SDSM has been applied to modal analysis to give exact solutions within low,
medium and high frequency ranges with remarkable computational efficiency. For instance, the
SDSM exhibits two orders of magnitudes of improvement in computational efficiency over the
conventional FEM. This superiority is much more pronounced at higher frequencies. The elegance
and uncompromising accuracy of the SDSM provide a much wider appeal than the classical DSM.

In essence, the SDSM [1–5] combines the spectral (S) method and the classical dynamic stiffness
method (DSM). One of the key points in the SDSM lies in adopting two sets of modified Fourier
series. The adopted modified Fourier series for any arbitrary displacement or force boundary
condition (denoted by h(ξ )) along a plate edge (line node ξ ∈ [−L,L] in local coordinates of plate)
is given by the following two sets of modified Fourier series

h(ξ ) = ∑
s∈N

l∈{0,1}

Hls
Tl(γlsξ )√

ζlsL
, Hls =

∫ L

−L
h(ξ )

Tl(γlsξ )√
ζlsL

dξ , (1a)

h(ξ ) = ∑
s∈N

l∈{0,1}

Hls
T ∗

l (γlsξ )√
ζlsL

, Hls =
∫ L

−L
h(ξ )

T ∗
l (γlsξ )√

ζlsL
dξ , (1b)
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where N= {0,1,2, ...} is the non-negative integer set, and the subscript ‘l’, taking value of either
‘0’ or ‘1’, denotes the corresponding symmetric or antisymmetric functions (and coefficients).
Here, ζls is given as ζls = 2 when l = 0,s = 0 and otherwise ζls = 1. The corresponding modified
Fourier basis functions Tl(γlsξ ) and T ∗

l (γlsξ ) in Eq. (1) are defined as

Tl(γlsξ ) =

{
cos( sπ

L ξ ) l = 0
sin
(
(s+ 1

2)
π

L ξ
)

l = 1
, T ∗

l (γlsξ ) =

{
sin( sπ

L ξ ) l = 0
cos
(
(s+ 1

2)
π

L ξ
)

l = 1
(2)

with ξ ∈ [−L,L] ,s ∈ N. The above two sets of modified Fourier series provide complete and
orthogonal sets to described any one-dimensional function h(ξ ) of Eq. (1). Moreover, the above
modified Fourier series has strong orthogonality which makes the SDSM numerically stable to
compute results within any desired accuracy.

By using the above modified Fourier series, the general solution of the governing differential
equation (GDE) for out-of-plane [2] and inplane [3] vibration of plate elements with arbitrary
boundary conditions in the frequency domain can be achieved. In the next step, the SDS matrix
for an element can be analytically formulated by substituting the above general solution into the
general boundary conditions (BC) by algebraic manipulation.

Next, the analytically expressed spectral dynamic stiffness (SDS) matrix of elements can be as-
sembled directly to model complex structures. The assembly procedure is similar to that of the
finite element (FE) method with the exception that the FE elements are generally connected at
point nodes whereas the SDS elements are connected on line nodes. Here the line nodes represent
either the plate boundaries and/or the inter-element edges which have the flexibility to describe any
arbitrary BC or continuity conditions (either classical [1–3] or non-classical [4, 5]). In general, for
an assembly structure, the analytical SDSM formulation can be written in the form: fff = KKKddd,
where KKK is the SDS matrix of the complete assembly structure, which relates the modified Fourier
coefficient vector of the force fff to that of the displacement ddd on all of the line nodes (boundaries
and inter-element edges) of the assembly structure, so that

fff =
[

fff T
1 , fff T

2 , · · · , fff T
i , · · · , fff T

NtlDOF

]T
, ddd =

[
dddT

1 ,ddd
T
2 , · · · ,ddd

T
i , · · · ,ddd

T
NtlDOF

]T
. (3)

In Eq. (3), the subscript NtlDOF is the total number of line degrees of freedom (line DOF) of
the plate assembly (Theoretically, each line DOF has infinite DOF since each BC function is a
continuous function on ξ ∈ [−L,L]). Here, NtlDOF = ln×NlDOF where ln is the number of total
line nodes of the plate assembly whereas NlDOF represents the number of line DOF of each line
node (for instance, an individual rectangular Kirchhoff plate, being a special case of the assembly,
has four edges, i.e., ln = 4 and each edge has two line DOF W and φ , i.e., NlDOF = 2). Each force
fff i and displacement dddi sub-vectors in Eq. (3) take the following form

fff i = [Fi00,Fi01,Fi02, · · · ,Fi10,Fi11,Fi12, · · · ]T , (4a)

dddi = [Di00,Di01,Di02, · · · ,Di10,Di11,Di12, · · · ]T , (4b)

where Fils and Dils (l ∈ {0,1},s ∈ N) are respectively the modified Fourier coefficients of the
corresponding force fi(ξ ) and displacement di(ξ ) BC (or CC) applied on the ith line DOF of the
assembly, which are obtained by applying Eq. (1) onto fi(ξ ) and di(ξ ) respectively to give

Fils =
∫ L

−L
fi(ξ )

Tl(γlsξ )√
ζlsL

dξ , Dils =
∫ L

−L
di(ξ )

Tl(γlsξ )√
ζlsL

dξ , (5a)

or Fils =
∫ L

−L
fi(ξ )

T ∗
l (γlsξ )√

ζlsL
dξ , Dils =

∫ L

−L
di(ξ )

T ∗
l (γlsξ )√

ζlsL
dξ . (5b)
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Therefore, each term of either Fils or Dils in Eq. (5) represents a frequency-wavenumber dependent
DOF (FWDOF) of the ith line DOF. In this way, the BC (or CC) can be arbitrarily prescribed along
any line DOF, which are directly transformed through Eq. (5) into vector form (i.e., fff i and dddi) of
Eq. (4) and eventually into fff and ddd in Eq. (3).

In essence, the elegance of the SDSM lies in representing a dynamical system very accurately by
using an extremely small number of DOF in an analytical and concise manner. This makes the
SDSM superior to other numerical or analytical methods in terms of both accuracy and compu-
tational efficiency within low, medium and high frequency ranges. The merits of the SDSM are
exploited by the application of the well-known Wittrick-Williams (WW) algorithm which is fur-
ther enhanced by some techniques described as follows. According to the WW algorithm, as the
frequency parameter ω is increased from zero to ω∗, the number of natural frequencies passed (J)
is given by

J = J0 + s{KKK f } , (6)

where s{KKK f } corresponds to the negative inertia of the final SDS matrix KKK f evaluated at ω = ω∗;
and J0 is given by

J0 = ∑
m

J0m , where J0m = JSm− s(KKKSm) , (7)

where J0m is the number of natural frequencies between ω = 0 and ω = ω∗ for an individual com-
ponent member when its boundaries are fully clamped. A strategy described in [1–3] is adopted
here to provide an efficient and reliable prediction for the above J0m which is based on the closed-
form solution of each members subject to full simple supports. Therefore, J0m of Eq. (7) can be
obtained by applying the WW algorithm in reverse to give J0m = JSm− s(KKKSm), where JSm is the
overall mode count of a certain member with all boundaries subject to simple supports, and s(KKKSm)
is the sign count of its formulated SDS matrix KKKSm. First, the computation of JSm in Eq. (7) is
accomplished in an analytical manner by solving a number theory problem. Next, the computa-
tion of s(KKKSm) in Eq. (7) is achieved in an elegant way by taking advantage of the mixed-variable
formulation. The above two techniques of computing JSm and s(KKKSm) resolves with conclusive
certainty the problem of determining J0 in a highly efficient, accurate and reliable manner.
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Abstract 

There has recently been significant interest in the vibrational behaviour of continuous structures 

with attached resonators [1]. In many cases the resonators form periodic arrays. Periodic 

structures are known to have interesting pass/stop band behaviour. When the dimensions of the 

periodic cell are comparable to or larger than the wavelength in the continuous structure this is 

due to Bragg scattering. The resonators introduce the possibility of stop bands around the 

resonator frequency, which can be tuned to lie in the sub-Bragg frequency range, i.e. when the 

length of the periodic cell is small compared to the wavelength of the host structure: this is of 

particular interest in mechanical vibrations where the relevant wavelengths are often quite large. 

However, as will be seen below, periodicity is not required for this behaviour to occur. 

 

In this paper a general continuum model is developed.  The periodic system comprises a 

uniform thin plate with a 2-dimensional periodic array of point resonators as shown in Figure 

1(a). For long wavelength behaviour the system approximates the continuous structure with a 

limp mass layer attached elastically to the host structure (Figure 1(b)). The pass/stop band 

characteristics of the continuum model are discussed. An analytical solution using periodic 

structure theory for plates lying on a 2-dimensional periodic array of point supports [2] is then 

extended to the system of Figure 1(a). The asymptotic, low frequency (sub-Bragg) limit gives 

results identical to the continuum model: it is perhaps easier, however, to interpret the 

underlying behaviour in terms of the continuum model, where periodicity is non-existent.  

 

Continuum model 

 

The periodic array of resonators in Figure 1(a) are attached at spacings Lx and Ly in the (x,y) 

directions respectively. The mass and stiffness of each resonator are mr and kr respectively, so 

that they have a resonant frequency 
0 r r

k m  .  Such a periodic structure has a stop band 

located at and around 
0

 , which can be tuned to lie much below the first Bragg band. Now 

consider the system shown in Figure 1(b), comprising the same host structure to which is 

attached a limp, layer of mass 2 per unit area through an elastic connection of stiffness  per 

Plate Limp mass layer 

Figure 1. Infinite plate with (a) periodic resonators and (b) connected limp mass layer. 

(a) (b) 
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unit area.  This continuum model is an approximation for the periodic system when the 

wavelength   of free wave propagation in the host structure is large compared to the resonator 

spacing. The low-frequency assumption, when the discrete system can be modelled by the 

continuous system in Figure 1(b), is valid if  max ,x yL L , 
2r x y

m L L  and 
r x y

k L L .  

 

Suppose the host structure is a thin plate.  The equations of free undamped motion are 

 

    
2

2 22 2
1 2

1 1 1 2 2 2 12 2 2 2
0; 0

w w
D w w w w w

x y t t
   

    
        

    
 (1) 

 

where w1 and w2 are the displacements of the two layers, and 1 and D its mass per unit area and 

bending stiffness. Time harmonic waves at frequency  and wavenumber k propagate if 

 

    4 2 4 2

2 1 2 1 2
0Dk                (2) 

 

Introducing 

 

 

2

2 42 1

0 0

1 2 0 0

; ; ; ;
k

k
D k

   
 

  
        (3) 

 

with  and k0 being the mass ratio and the wavenumber in the plate, leads to 

 

 

2

4

2 2

1
1

1 1

  
   

 
 (4) 

 

Discrete model 

 

An infinite, 2-dimensionally periodically point-supported plate was considered in [2]. If the 

point supports apply only a translational constraint then free waves propagate if  

 

 

   
2 222

1
1 0

2 2

T

m n
x y

K

a m n a   

 

 

 

    
 

     (5) 

 

where x,y = kx,yLx,y are the propagation constants in the (x,y) directions, kx,y being the 

wavenumber components and 

 

 1

2

2
; ;

y
Tx y

x

x y r r

r r

L
L L a K

D L

L L k m

D k m







   

 
 

 
  (6) 

 

where the last term is the negative of the effective dynamic stiffness of the spring mass 

attachment. Free waves comprise a series of space harmonics, with the (m,n)’th term in the sum 

in Eq (5) representing the (m,n)’th harmonic. At low frequencies, i.e. in the sub-Bragg 

frequency region, the (0,0) harmonic is largest and dominates the sum. Neglecting the other 

terms, as frequency tends to zero, free waves propagate if  
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    
2 2 2

2 22 14 2 4 2 2

2
;

x y x y r r
Tx y x y

r r

L L L L k m
L L k K k k k

D D k m

 



      



 
 
 

 (7) 

 
Note that these waves propagate in any direction with the same wavenumber k. Noting now that 

2r x y
m L L , 

r x y
k L L  and 

2

0 2 r r
k m    , Equation (7) reduces to Equation (4). 

 

Examples 

 

Figure 2 shows the positive-real and negative-imaginary solutions for   (from equation (4)) for 

various values of mass ratio  .  At low frequency (
2

1 ), 
4

1     and the wavenumbers 

approximate those of a plate with a mass per unit area  1 2
  .  There is a pair of propagating 

waves (k real) and a pair of evanescent waves (k imaginary), as there is at high frequencies 

(
2

1   ). The dynamic stiffness of the attached layer thus varies from being mass-like 

below resonance to stiffness-like above resonance. There is a stop band in the range between 

0
   and 

0
1   . In this frequency range the solutions to the dispersion equation are 

complex and of the form  1 2k i  . The width of the stop band is 1 1  . 

 

Concluding remarks 

 

The resonant layer or periodically 

attached resonators introduce a stop band 

between the resonator frequency 0 and 

0
1  . The bandwidth depends on the 

mass ratio , and for small  

approximates /2. Note that periodicity is 

not relevant in the sub-Bragg region. 

Departure from periodicity makes no 

difference as long as it is small enough to 

avoid significant back-scattering. 

Irrespective of the physical design of the 

resonators, and many designs have been 

suggested, the behaviour is determined by 

their effective mass and stiffness, which 

together define the tuned frequency 
0

  

and the mass ratio , which determines 

the bandwidth. 
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Abstract 

Stability of the in-plane free vibration of a rotating thin ring elastically mounted to an 
immovable axis is revisited in this study. We aim to demonstrate theoretically that the ring can 
be unstable in contrast to a commonly accepted belief that the instability cannot occur [1].  
The inner surface of the ring is assumed to be connected to an immovable axis by means of 
distributed radial and circumferential springs with stiffness (per unit length) kr  and  kc . The 
outer surface is stress-free.  

 
Figure 1. A rotating thin ring on an elastic foundation. 

 
The ring parameters and coordinate systems are defined in Figure 1. A space-fixed coordinate 
system ( , )r θ  is employed. An auxiliary coordinate z is introduced as z r R= − . Other 
parameters, which are not shown in Figure 1, are: b  the width; E the Young’s modulus; ρ  the 
mass density; A  the area and I the cross-sectional moment of inertia of the ring. It is assumed 
that the radial and circumferential displacements ( , , )w z tθ  and ( , , )u z tθ  of a differential 
element on the ring are defined by 
 

                                        
2

0 1 2

0

( , , ) ( , ) ( , ) ( , ),
( , , ) ( , )
w z t w t zw t z w t
u z t u t

θ θ θ θ
θ θ

= + +
=

                              (1) 

 
where 0( , )w tθ and 0 ( , )u tθ  are the radial and circumferential displacements of the middle 
surface, respectively; 1( , )w tθ and 2 ( , )w tθ  are the higher order corrections of the radial 
displacement. These corrections enable us to take a linear distribution of the through-thickness 
variation of the radial stress into account. The radial stress at the inner surface of the ring is not 
zero because of the presence of the radial springs. If the stiffness of the radial springs is large 
enough, the radial stress at the inner surface cannot be neglected. Thin rings are considered, 
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  σ r h/2= Eε r h/2= E(w1 + hw2 ) = 0.

thus, the transverse shear deformation and rotatory inertia are not incorporated in the 
formulation of the governing equations. 
The boundary conditions for the inner and outer surfaces of the ring must be satisfied. The 
material of the ring is considered to be linearly elastic. For the outer surface of the ring, the 
radial stress should be zero, which implies that 
 

        (2) 
 
The inner surface is connected to the springs, thus 
 
                                            bσ r −h/2= Ebε r −h/2= Eb(w1 − hw2 ) = kr w −h/2 .                                           (3) 

 
Combining Eqs. (2) and (3), 1( , )w tθ and 2 ( , )w tθ  can be expressed in terms of 0( , )w tθ . To 
account for the rotation-induced hoop tension, the same nonlinear strain-displacement relation 
as in Ref. [2] is applied. Using the Hamilton's principle, the nonlinear equations which govern 
the radial and circumferential motions of the ring are derived in a space-fixed reference system. 
The linearised governing equations are obtained about the axisymmetric static equilibrium. The 
latter is derived from the governing equation in the radial direction. Details of the derivations 
can be found in [3]. 
To analyse the problem, it is convenient to introduce the following dimensionless parameters 
and variables 
 
            t0

2 = ρAR4 / (EI ), τ = t / t0 ,  Ω =Ωt0 , χ = EAR2 / (EI ),  Kr = krR
4 (EI ),  K = kc kr .       (4) 

 
Since the radial expansion of the ring grows with the increasing rotational speed, there should 
be an upper limit of the rotational speed above which the prestresses due to rotation may exceed 
the allowable strength of the materials. There are two kinds of prestresses which should be 
examined beforehand. These are: the maximum hoop stress which occurs at the outer surface of 
the ring and the maximum radial prestress which appears at the inner surface of the ring. To 
avoid a discussion of the physical behaviour of different materials, the maximum prestress 
0
max 0.2Eσ ≤  is chosen to define the regime in which the ring material is assumed to behave 

linearly. 
To illustrate that instability can occur prior to material failure, the following dimensionless 
parameters are chosen: 51200, 4 10 , 0.001.rK Kχ = = × =  These parameters correspond to a thin 
ring with small bending stiffness and stiff foundation.  
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Figure 2. Dimensionless natural frequencies versus rotational speeds. 
 
Fig. 2 illustrates the relationship between the rotational speed and the natural frequencies of the 
first four modes in the space-fixed reference system. We count the modes starting form n = 0 , 
the latter implying an angle-independent deformation. Note that in this mode the rotating ring 
can and does deform elastically.   The vertical dotted line in Fig.2 corresponds to the speed 
which is determined by 0

max 0.2Eσ = . For mode numbers greater than zero, both the lower and 
higher natural frequencies split into two branches which result in four distinct natural 
frequencies per mode. However, for the 0n =  modes, the natural frequencies do not bifurcate. 
The upper branch of the 0n = mode increases monotonically as the speed of rotation grows. The 
lower branch first descends and then crosses the horizontal axis at a certain rotational speed. It 
can be shown that above this speed, the natural frequency becomes purely imaginary which 
indicates the onset of instability of the divergence type. The ring displacement increases 
exponentially in time in the circumferential direction. For modes 1n ≥  one can see that the 
lower set of natural frequencies first branches into two curves at 0Ω > , then the two collide 
with each other and disappear from the real plane (become complex-valued) after a certain 
speed. Since the characteristic polynomial has real-valued coefficients, the complex roots 
appear in conjugate pairs and one may say that flutter occurs after the collision speed. The 
lowest speed at which instability occurs is for the mode 0n = . Divergence instability of the 0th 
mode always occurs before flutter could happen. 
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Abstract 

The goal of the present paper is the analysis of the effect of geometric imperfections in circular 
cylindrical shells. Perfect circular shells are characterized by the presence of double shell-like 
modes, i.e., modes having the same frequency with modal shape shifted of a quarter of 
wavelength in the circumferential direction. In the presence of geometric imperfections, the 
double natural frequencies split into a pair of distinct frequencies, and the splitting is 
proportional to the level of imperfection. In some cases, the imperfections cause an interesting 
phenomenon on the modal shapes, which present a strong localization in the circumferential 
direction. This study is carried out by means of a semi-analytical approach compared with 
standard finite element analyses. 

1. Introduction 

Circular cylindrical shells have been proven to be sensitive to initial geometric imperfections. 
Kubenko and Koval’chuk [1] reviewed many studies on the influence of the initial 
imperfections on the natural frequencies and mode shapes of elastic shells. They analysed the 
splitting of the natural frequencies of two conjugate modes as a measure of the initial geometric 
imperfections imposed. Katawala and Nash [2] studied the influence of the initial geometric 
imperfections on the vibrations of thin circular cylindrical shells. They found that the natural 
frequency of the imperfect modes increases with the increase in the amplitude of imperfection 
on the modal shape. However, the effect of imperfections on mode shapes appears not yet well 
understood, in particular localization phenomena have been not evidenced in the past. 
In the present paper, the linear vibrations and modal localization in circular cylindrical shells are 
analysed in the framework of the Sanders-Koiter theory (see e.g. [3, 4]). The shell deformation 
is described in terms of longitudinal, circumferential and radial displacement fields. Clamped-
clamped boundary conditions are investigated. The three displacement fields are expanded by 
means of a double mixed series based on Chebyshev polynomials for the longitudinal variable 
and harmonic functions for the circumferential variable; the Rayleigh-Ritz method is used to get 
approximated natural frequencies (eigenvalues) and mode shapes (eigenfunctions). The three 
displacement fields are re-expanded by using the previous approximated eigenfunctions; 
conjugate mode shapes are used; geometric imperfections are imposed on the modes in order to 
investigate the modal localization of the shells. 
The semi-analytical approach proposed in the paper is validated in linear field by means of 
comparisons with finite element analyses. 

2. Shell theory 

In Figure 1, a circular cylindrical shell having radius R, length L and thickness h is represented; 
a cylindrical coordinate system (0; x, θ, z) is considered to take advantage of the axial 
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symmetry; the origin 0 of the reference system is located at the centre of one end of the shell. 
Three displacement fields are represented by: longitudinal u(x, θ, t), circumferential v(x, θ, t) 
and radial w(x, θ, t). 

 
Figure 1: Geometry of the functionally graded shell. (a) Complete shell; (b) cross-section of the 
shell surface. 

The Sanders-Koiter shell theory is based on the Love’s first approximation [3, 4]. The strain 
components (εx, εθ, γxθ) are related to the middle surface strains (εx,0, εθ,0, γxθ,0) and to the changes 
in curvature and torsion (kx, kθ, kxθ) of the middle surface of the shell by the following 
relationships [3,4]. Isotropic shells are considered. 
The elastic strain energy and the kinetic energy of a cylindrical shell are given by [3,4] 
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∫
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∫
 

(4) 

where h, R and L are the thickness, radius and length of the shell, respectively. 
Discretization approach 
In order to carry out the linear analysis of the shell, a two-step procedure is applied [3, 4]: i) the 
three displacement fields are expanded using a double mixed series and the Rayleigh-Ritz 
method is applied to obtain approximated eigenfunctions; ii) the displacement fields are re-
expanded by using the approximated eigenfunctions and modal geometric imperfections are 
imposed on the modes. 

3. Numerical results 

The mechanical properties of the circular cylindrical shell 
considered are reported in Table 1; these data are referred to a 
PET shell, which are generally used for our lab experiments. In 
order to validate the semi-analytical approach proposed in this 

paper, the natural 
frequencies of the 
clamped-clamped 
cylindrical shell of Table 1 obtained by applying 
the Sanders-Koiter theory are compared with those 
obtained by FE analyses, see Table 2. These 
comparisons show that the present semi-analytical 
method gives results close to the FEM, the 
differences being less than 2%. 

Table 1: Mechanical parameters of the 
clamped-clamped circular cylindrical shell. 
Young’s modulus E [GPa] 27.58 
Poisson’s ratio ν 0.42 
Mass density ρ [kg/m3] 1541 
Thickness h [mm] 0.25 
Radius R [mm] 43.65 
Length L [mm] 95.50 
 

Table 2: Natural frequencies of the clamped-clamped 
circular cylindrical shell of Table 1. Comparisons 
between Sanders-Koiter shell theory (SKT) and finite 
element method (FEM). 
Mode Natural frequency (Hz) Difference % 
(j,n) SKT FEM  
(1,7) 1850.49 1834.56 0.86 
(1,6) 1850.97 1828.80 1.20 
(1,12) 4099.48 4087.13 0.30 
(1,0) 15303.9 15315.8 0.08 
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The analysis is carried out considering a clamped clamped shell with small geometric modal 
imperfections (modes (1,6) and (1,7)) having magnitude 20%h; Figure 2 shows the effect of 
imperfections on modes (1,6) and (1,7,c), where “c” means the “conjugate mode”, a 
macroscopic localization on mode (1,6) and a slight asymmetry on mode (1,7c) are visible. 
Results are compared with FEM analyses, see also Table 2. The localization appears when the 
imperfection is a combination of two distinct modes and the magnitude exceeds the threshold of 
10%. Indeed, if the imperfection is considered on mode (1,6) (or (1,7)) only, no localization 
appears, even if the imperfection magnitude is greatly increased. Moreover, the boundary 
conditions play a role, e.g. free-free shells do not display localization. 
 

Sanders-Koiter theory Finite Element Method 
Mode (1,7,c) Mode (1,6) Mode (1,7,c) Mode (1,6) 

    
Figure 2: Geometric imperfections wp(1,6)=wp(1,7)=0.2h, wp(1,6,c)=wp(1,7,c)= 0. 
Localization. 

4. Conclusions 

In this paper, the effect of the geometric imperfections on the modal shapes of cylindrical shells 
is analysed. The Sanders-Koiter shell theory is used. The shell deformation is described in terms 
of longitudinal, circumferential and radial displacement fields. Clamped-clamped boundary 
conditions are applied. Geometric imperfections are imposed to investigate the modal 
localization of the shells. 
The semi-analytical approach proposed in this paper is validated in linear field by means of 
comparisons with finite element analyses.  
It is found that small initial geometric imperfections imposed on single modes or conjugate pairs 
of modes gives no localization on the modal shape. Conversely, it is seen that small initial 
geometric imperfections imposed on two non-conjugate modes give modal localization on all 
the modes; this localization is maximum on the modal shape corresponding to the initial modal 
imperfection. 
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Abstract

Impacting rods are used in various devices in practical life but also for scientific experiments. The
typical arrangement is a primary rod with a tool at the end contacting the process material and a
free tip, onto which a piston rod is hitting with a given kinetic energy. The hit is followed by a
complicated sequence of phenomena. A stress wave starts to propagate along the primary rod to
finally reach the tool-process material interface. It is of interest to determine and adjust the stress
wave propagating along the rod. Since it is a well-known fact that the cross-sectional profile of
the piston rod is shaping the stress wave profile, the idea is to adjust the geometrical form of the
impacting piston for an optimized shape of the stress wave. The results can be applied in the field
of rock drilling for instance, where researchers revealed, that the efficiency of the drilling process
strongly depends on the shape of the longitudinal wave transmitted through the drill rod to the drill
bit.

To model 1D impact problems the impacting bodies are described mathematically by the partial
differential equation for the displacement ui(x, t) as follows

∂

∂x

[
EAi(x)

∂ui

∂x

]
= ρA(x)

∂ 2ui

∂ t2 , i = 1,2 (1)

with Young‘s modulus E, mass density ρ and area of cross-section A(x). For a constant cross-
section and for constant material properties the governing equation for each body simplifies to the
well-known 1D wave equation

∂ 2ui

∂ t2 − c2
0i

∂ 2ui

∂x2 = 0, c0i =

√
Ei

ρi
, i = 1,2 (2)

with wave propagation speed c0. The related solution is given by the d’Alembert solution

u(x, t) = f (x− c0t)+g(x+ c0t) (3)

with f and g being arbitrary functions. The impact between these two bodies leads to the following
transition conditions at the contact zone

u1(0, t) = u2(0, t), (4)

E1A1
∂u1

∂x
(0, t) = E2A2

∂u2

∂x
(0, t) (5)

assuming that the force between the two bodies is a compressional force and that the spatial coor-
dinate of the impact zone is x = 0. For an impact between two bodies with constant cross-section
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this results in a textbook problem, the solution of which can be seen e.g. in [2]. For non-uniform
impacting partners analytical solutions of the differential equations only exist for special shapes
of the cross-section. The solutions are obtained by applying the exponential approach

u(x, t) = a(x)ei(kx−ωt) (6)

where a(x) is the wave amplitude and k is the wave number [1]. With this approach the shape of
the cross-sections can be determined for which (6) is a solution in form of a travelling wave.

For arbitrary cross-sections analytical solutions of the wave-problem do not exist and therefore,
both the solutions in the impacting parts as well as the impact itself have to be treated numerically.
This leads to a variety of problems and is computationally expensive.
At this point it is advantageous to consider the impacting parts with piecewise constant cross-
sections. For such rods the simple wave equations can be used and transition conditions between
the different sections can be formulated which lead to transmitted and reflected waves at each
discontinuity of the cross-section. With such a rod of piecewise constant cross-sections a rod of
arbitrary cross-section can be approximated.
The transition conditions at the discontinuities are determined under the assumptions of linear elas-
tic material behavior and force and displacement balance. In the first instance the segment lengths
are arbitrary and since each reflected or transmitted wave reflects and transmits at the next change
of cross section again, it results in an exponential increase of transmissions and reflections when
either the time or the number of cross sections is increased. This causes very high computational
costs.
If all cross sections are of the same length however, the reflections and transmissions all occur at
the same time at the changes of cross section because the wave propagation speed is constant on
the segments. Therefore, a transmitted and a reflected wave can be combined to a new wave travel-
ing along the rod segment. This leads to a linear increase of calculation time which is a noticeable
reduction and enables to use a large number of cross section segments in order to approximate any
piston rod geometry in good detail.

The benefit of the new method is that the results are more accurate with shorter computation time
compared to the FE-approach for example.
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Abstract 

Efficient and numerically sound techniques are presented for the free vibration analysis of 

sandwich plates made of piezoelectric layers supported by a silicon substrate.  The in-plane 

shape of the sandwich plate is assumed to be quadrilateral with four curved edges.  Procedures 

and results from the free vibration analysis for two and three dimensional problems are 

described below.  Two sandwich structure models are considered in the first part of this 

presentation.  Sandwich structure is considered in the first model as a first order shear 

deformable (FOSD) plate wherein the in-plane displacement varies linearly over the thickness 

keeping the transverse displacement uniform.  Displacement at a point on the middle plane of 

the sandwich plate is described by three translational ),,( 321 uuu  and two 

rotational ),( 21  components.  Electrical charge   which develops during the bending of 

piezoelectric layers is known to vary nonlinearly in the thickness direction.  Therefore, a layer-

wise linear scheme is used for this nonlinear distribution in each piezoelectric layer. All 

components ,1u ,2u ,3u 1 and 2 are expressed by Non-niform rational  B- Spline (NURBS) 

curves [1].  Also, the four curved boundaries are expressed by NURBS and benefits from the 

natural coordinates 11  i , 2,1i are fully exploited.   For the second sandwich plate model, 

each layer is taken as a hexahedral solid enclosed by six surfaces.  Each hexahedron is defined 

by NURBS in the natural coordinates 11  i with 3,2,1i . Displacement ,1u ,2u 3u and 

potential field  are expressed similarly.  Controls points for the displacement and potential 

fields constitute the degrees of freedom at a point in the continuum.  

 

Embedded in this paragraph are some of the basic equations, which a researcher working on 

piezoelectric materials and associated structures routinely applies.  Material equations relating 

stress }{ , electric flux density }{D , mechanical strain }{ and electric field }{E are: 

}{][}]{[}{ EeC T  and }]{[}]{[}{ EeD   , where ][C elastic stiffness matrix, 

][e piezoelectric coupling matrix, and ][  dielectric matrix [2-4].  Mechanical strains are 

expressed in terms of ,1u ,2u 3u , etc.  Maxwell’s equation }{}{ E is used to express the 

electric field }{E in terms of the electric potential .  The displacement field functions and 

material relations are then used in the energy functional WUT  , where U  the strain 

energy, T  the kinetic energy and W the work done by externally applied electrical and 

mechanical loads.  Two coupled equations are then obtained from the stationary condition of the 

energy functional  . By eliminating the electric potential, the two are merged to one equation 

of motion )}({}]{[}]{[ tFKM  for the forced vibration analysis of a piezoelectric 

structure. Here, the vector of control points associated with mechanical displacement and 
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rotation }{ and mass matrix ][M . The stiffness matrix and the force vector are given by 

][]][[][][ 1
ememem KKKKK   and )}({]][[)}({)}({ 1 tQKKtFtF emem

 respectively. 

 

In this section, results are presented and discussed for the free vibration of a square 

)150150( mmmm cantilevered sandwich plate of thickness h and stacking layout ZnO/Si/ZnO 

[5].  The three layers are assumed to have the same thickness. Numerical simulations are 

performed using both two and three dimensional models mentioned above.  Patches and blocks 

for various aspect ratios and mesh configurations are considered keeping order of the NURBS 

curves at four.  Control knots inside the two domains are generated through linear interpolation.  

A basic plate patch has 66  control points for the middle plane, whereas a mesh 

of 555  control points is considered in a hexahedral continuum.  A 3×3, i.e. nine patch plate 

model each having 36 control points and six sub piezoelectric layers has 1280 mechanical 

degrees of freedom and 1792 electrical degrees of freedom. Degrees of freedom in one solid 

module, for example, amount to 375 corresponding to ),,( 321 uuu and 125 to .  Hence, in 

3×3×3 solid modules and 125 control points per module, there are 6591 mechanical and 2197 

electrical degrees of freedom to a total of 8788.  Eigenvalues and eigenvectors are obtained 

from the homogeneous equation of motion, i.e. without the force vector, by the direct iteration 

method. Table 1 shows values of the first five natural frequencies in radian per second for 

100/ ha and 50 respectively. Columns for cases 1 and 2 present results from the plate and 3D 

models respectively.  A third model is built in ANSYS using solid 226 coupled-field-elements 

for the piezoelectric material and solid 185 for the silicon core.  The assembled model in this 

case has 129546 degrees of freedom, which is approximately fifteen times the NURBS based 

solid model.  The results from ANSYS are given in the last column of Table 1.  A huge 

advantage of the present method over the conventional finite element method is seen here.  

Results in Table 1 from different formulations show a resounding agreement between the 

frequencies and modes shapes from the present NURBS based solid and ANSYS models.  

However, the mode shapes are not included in this summary paper because of the space 

limitation.  While comparing the frequencies between the plate and solid models, it is found that 

there is a very good agreement in the fundamental frequencies from the plate and solid NURBS 

models. By examining the mode shapes, it was observed that the odd modes showed reasonably 

good agreement, while it was not so for the even modes.  The difference in fundamental 

frequencies, as expected seems to be increasing with the thickness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Natural frequencies (rad/sec) of 

rectangular sandwich plate. 

 

a/h Mode 

Number 

Case 1 Case 2 ANSYS 

 

 

 

100 

 

1 

2 

3 

4 

5 

389 

1432 

2371 

4746 

5999 

385 

1222 

2445 

4214 

5979 

385 

1221 

2443 

4215 

5977 

 

 

50 

 

 

1 

2 

3 

4 

5 

803 

2846 

4730 

8419 

11935 

798 

2433 

4874 

8377 

11905 

799 

2431 

4874 

8375 

11913 
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Some results for a 50 cm long cantilevered homogeneous prismatic PZT4 piezoelectric bar [5] 

are also presented as the benchmark.  The cross section of this bar is uniform and given 

by mmmm 5050  .  The condition of 0321  uuu is taken at the fixed end.  Similarly, the 

electrical potential 0 is applied by grounding the top and bottom surfaces.  The model from 

the present method is created with a grid of 125555  .  Each module has 125 control 

points, 6591 mechanical degrees of freedom corresponding to ),,( 321 uuu and 2197 electrical 

degrees of freedom pertaining to the electrical potential function  to a total of 8788.  The 

model created in the ANSYS environment using 226 coupled field elements has a total of 65066 

degrees of freedom.  Values of the first eight natural frequencies in radian per second are given 

in Table 2.  Results from the two sources show very close agreement.  The mode shapes though 

not presented in this summary were found to match closely in pattern.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Efficient computational two and three dimensional methods are developed for piezoelectric 

laminates with full electro-mechanical coupling. NURBS curves are used to represent geometric 

coordinates, displacement and electric charge fields.  Free vibration analysis is performed on a 

rectangular sandwich plate to validate the efficiency of the present NURBS based method. The 

fundamental frequencies from the plate and solid models of the piezoelectric sandwich plates 

are close. Hence, the use of the first order shear deformable plate model should be quite 

adequate in sensing, actuating and power harvesting devices, where only the fundamental mode 

of vibration is triggered to a significant extent.  The present three dimensional NURBS based 

approach and ANSYS yield very close results. However, there is a huge difference in the 

numbers of the degrees of freedom in the two models. This can be significant particularly if the 

transient response analyses are performed.  
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Table 2.  Natural frequencies (rad/sec)for PZT4 bar . 

 

Mode 

Number 

3D Solid 3D ANSYS Difference 

(%) 

1 

2 

3 

4 

5 

6 

7 

8 

1125.6 

1141.5 

2980.1 

4947.5 

5124.1 

5684.2 

8936.1 

10681.6 

1121.8 

21151.4 

2981.7 

4939.7 

5134.9 

5554.9 

8910.2 

10740.9 

0.34 

0.87 

0.06 

0.16 

0.21 

2.33 

0.29 

0.56 
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Abstract 

Consideration is given to determining the exact solutions of the eigenproblem posed by a graph 
with linear tree topology on which the fourth order Sturm Liouville operator is acting.  
However, this purely mathematical problem in Quantum Graph theory can be solved 
straightforwardly using a structural mechanics analogy, namely that its solution corresponds 
precisely to the free vibration problem of a network of beams with identical topology.  It is 
interesting to note that this parallels previous work in which a similar analogy, but with bars 
rather than beams, was made to establish exact solutions to the simpler problem of the second 
order Sturm Liouville operator acting on similar tree topologies [1,2].  Such problems remain a 
continuing source of mathematical interest [3,4]. 
   The exact free vibration of a single, uniform Bernoulli Euler beam can be described by the 
following fourth order Sturm-Liouville equation 

wyxv
dx

dy
xv

dx

d

dx

yd
xv

dx

d 














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2

22

2

 (1)  

where v2(x) is the flexural rigidity of the beam; v1(x) is the static axial load; v0(x) is the 
distributed foundation stiffness per unit length; w is the mass per unit length of the beam; and  
is 2, ( is the circular frequency).  The exact solution of Eq.(1) is most conveniently achieved 
in the form of a dynamic stiffness matrix, e.g. [5].  This allows any number of tree topologies to 
be modelled, while use of the Wittrick-Williams algorithm [5] enables any desired eigenvalue to 
be converged upon to any desired accuracy with the certainty that none have been missed. 
   The remainder of this paper examines the eigenvalues and corresponding eigenvectors of a 
series of trees typified by the one drawn to enhance clarity in Fig. 1.  However, it should be 
noted that: every tree must have one or more levels ሺ݊ ൒ 1ሻ ; within any given tree the 
branching number, b, must be constant with ܾ ൒ 1; and that any members (edges) at the same 
tree level are theoretically collinear in terms of the structural mechanics analogy.  Subject to 
these constraints, the use of theoretical relationships for eigenvalue multiplicity and efficient 
coding techniques, trees of virtually any complexity can be solved.  For brevity in the results 
presented herein, each member is assumed to be a uniform Bernoulli Euler beam and the effects 
of static axial load and distributed foundation stiffness are ignored.   
   The results given in Table 1 are for a tree with clamped boundary conditions at the left hand 
side (the root of the tree) indicated by the letter ‘A’ in Fig. 1 and at the right hand side indicated 
by the letters ‘O’ to ‘W’.  The table shows the set of fundamental, normalised eigenvalues and 
their corresponding multiplicities, that completely describe the family of repetitive trees of 
length n = 1, 2,..., 5.  The index, r, defines the subtree length in which a fundamental eigenvalue 
first occurs, denoted by a ‘1’ in the appropriate column.  Any multiplicities are then calculated 
from Eq.(2).  As examples, consider the following: (a) the tenth eigenvalue of the n = 5 tree is 
given as ߣ ൎ ሺ0.5087ߨሻସ.  This fundamental eigenvalue first appears in subtree r = n = 5 and 
Eq.(2a) gives its multiplicity ܯ௡ as 1; (b) the 15th eigenvalue for the same tree lies in a group of 
multiplicity 18, where ߣ ൎ ሺ0.7314ߨሻସ  and its multiplicity of the fundamental eigenvalue is 
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given by Eq.(2b) with b = 3, n = 3, r = 2, as ܯଶ ൌ 2 ൈ 3ହିଶିଵ ൌ 18; (c) the 16th eigenvalue for 
an n = 4 tree is given as ߣ ൎ ሺ1.192ߨሻସ whose multiplicity is given by Eq.(2b) as ܯଷ ൌ 2 ൈ
3ସିଷିଵ ൌ 2 .  The last eigenvalue given in the table corresponds to the clamped clamped 
eigenvalue of a single beam.  For n = 5 this eigenvalue has multiplicity 54.  For the notation 
adopted in this paper this multiplicity is defined as M1=54.  The subscript refers to the subtree 
that is vibrating.  The mulitplicites of each eigenvalue Mr are given by  
 

  111for1;1 1   nrbbMM rn
rn  (2a,b)  

Table 1. Normalised eigenvalues of a tree with n=5 and b=3.  For each eigenvalue the 
associated subtree length is given by the index r corresponding to a mulitplicity of ‘1’. 

 

Eigenvalues Multiplicities 

k 4
k  

r = 
5 4 3 2 1 

1 0.3234581 1     
2 0.3896334 2 1    
3 0.5040498 6 2 1   
4 0.5087078 1     
5 0.6242067 2 1    
6 0.6965265 1     
7 0.7314065 18 6 2 1  
8 0.8103492 6 2 1   
9 0.8506574 2 1    
10 0.8746724 1     

Eigenvalues Multiplicities 

k 4
k  

r = 
5 4 3 2 1 

11 1.127646 1     
12 1.151974 2 1    
13 1.192491 6 2 1   
14 1.272673 18 6 2 1  
15 1.307907 1     
16 1.380471 2 1    
17 1.499681 1     
18 1.499999 6 2 1   
19 1.505618 54 18 6 2 1 

 
 

For the tree shown in Figure 1 with n = 4 the results in the column r = 5 can be ignored.  The 
first eigenvalue for this tree has a multiplicity 1 and is the fundamental eigenvalue.  Higher 
harmonics of this fundamental eigenvalue exist higher up the spectrum as shown by the multiple 
occurrences of the value 1 in the r = 4 column.  Other multiplicites exist such as 2 and 6.  These 
are different fundamental eigenvalues and are harmonics of subtrees.  The first occurence of the 
multiplicity 2, in this column, is the fundamental eigenvalue for a subtree r = 3.  Any eigenvalue 
with multiplicity greater than unity will have unique eigenvector characteristics.  Looking at 
Figure 1, we can see that if the subtree of length 3 emmanating from vertex B to tips OPQ is 
vibrating with its root clamped then it can be only achieved if the subtree B to RST is vibrating 
in antiphase or if B to UVW is vibrating in antiphase or a combination of the two subtrees 
vibrating in antiphase.  Hence there exist two independent orthogonal modes and the n = 4 tree 
has an eigenvalue of the subtree of length r=3.  This argument can be followed for all  subtrees. 
   The rapid growth in the multiplicities can be seen by looking at eigevectors of the individual 
member for a clamped clamped eigenvalue.  Figure 2a indicates that any pair of beams which 
emanate to the right of a vertex at level n−1 of Figure 1 can vibrate flexurally in antiphase and 
with their modes having equal amplitude, so that, remembering that the beams are collinear, 
equilibrium of moment and of transverse force exists at their common vertex.  Because there is 
equilibrium with the force vector results in zero rotation and zero translation which, in effect, is 
the equivalent of a clamped supprt.  Hence the common node is shown as a clamped boundary 
condition at the left hand side.  It is only possible to get equilibirum by examining modes that 
have members vibrating in antiphase.  An eigenvector to a path such as PtGCBA (t: top) is no 
longer possible at the same eigenvalue because the associated mode would have to involve zero 
deflection and rotation at G, C and B and such modes cannot give both moment and transverse 
force equilibrium at G, C and B (they can only give either moment equilibrium or transverse 
force equilibrium).  Figure 2(b) shows a mode for a subtree of length r = 2.  The approximate 
mode and the relative amplitudes shown for the upper four beams give force and moment 
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equilibrium both at their common vertex and, because the lower four beams are in anti-phase, at 
the left-hand vertex on the figure. Therefore, this is clearly a possible mode for the set of b 
subtrees emanating to the right from any vertex at level n−2. Hence it may be deduced that the 
mode multiplicities are again the same as those described in equation (1).  

 
Figure 1. Four level tree with b=3. 

 
      (a)       (b)      

Figure 2. Eigenvectors corresponding to (a) M1 and (b) M2 for trees of beams which form the 
analogous structural mechanics problem of trees of the Sturm-Liouville differential equations. 
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Faculty of Aerospace Engineering 

Technion, I.I.T., 32000, Haifa, ISRAEL. 

Email: haim@technion.ac.il; 

abramovich.haim@gmail.com 

Tel : +972 544 696566 

 

 

 
Obtained his B.Sc., M.Sc.  and Ph.D. degrees from the Faculty of Aerospace 

Engineering, Technion, in 1975, 1979 and 1983, respectively.  

 

His Ph.D. thesis was entitled “The behavior of the Blade of a Darrieus Wind Turbine”, 

while his M.Sc. thesis title was “Correlation between Vibrations and Buckling of 

Stiffened Shells with Realistic Boundary Conditions and Combined Loading”.  

 

He has been with the Technion since 1987, and currently he is the head of the Aerospace 

Structures Laboratory.  

 

He spent three years with the Israeli industry and between 1996-1998 he was Guest 

Professor at ETH Zurich Institut fur Leichtbau und Seilbahntechnik, Switzerland.  

 

His main fields of interest are: static and dynamic stability of thin walled structures, 

piezoelectric materials, laminated composite structures, dynamic buckling of thin walled 

structures, smart structures technologies, structural mechanics and energy harvesting 

using piezoelectric and pyroelectric materials .  

 

He has published more than 103 papers in well-known international journals on these 

quoted subjects. He is the author of 10 patents on piezoelectric harvesting devices. He is 

also the author of two new books with another one in progress: 

 

1. H. Abramovich, Intelligent Materials and Structures, © 2016 Walter de Gruyter 

GmbH, Berlin/Boston, 386 p. 

2. H. Abramovich, Stability and Vibrations of Thin Walled Composite Structures, 

© 2017 Woodhead Publishing Limited, 540 p. 

3. H. Abramovich, Advanced Aerospace Materials – Aluminum-based and 

Composite Materials, in progress, to be published by Walter de Gruyter GmbH, 

Berlin/Boston. 

 

Since 2013, editorial board member of the International Journal of Composite Materials 

 

Since 2014, editorial board member for International Journal of Aeronautical Science & 

Aerospace Research (IJASAR). 
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Professor Ranjan Banerjee 

After receiving his Bachelor's and Master's Degree in Mechanical Engineering from the University of 

Calcutta and the Indian Institute of Technology, Kharagpur, respectively, Ranjan Banerjee joined the 

Structural Engineering Division of the Indian Space Research Organisation, Trivandrum in 1971 and 

worked there for four years, first as a Structural Engineer and then as a Senior Structural Engineer. He 

was involved in the dynamic analysis of multistage solid propellant rocket structures using the finite 

element method. He also carried out research on the response of rocket structures to acoustic loads.  

Later in the year 1975 he was awarded a Commonwealth Scholarship to study for a PhD degree at 

Cranfield University where he conducted research within the technical areas of structural dynamics and 

aeroelasticity. He received his PhD in 1978. An important spin-off from his PhD was the development 

of an aeroelastic package in Fortran, called CALFUN (CALculation of Flutter speed Using Normal 

modes) which was originally written for metallic aircraft, but later extended to composite aircraft. 

CALFUN has been extensively used as a teaching and research tool in aeroelastic studies. After 

completing his PhD, he joined the Structural Engineering Division of the University of Cardiff in 1979 

and worked there for six years first as a Research Associate and then as a Senior Research Associate to 

investigate the free vibration and buckling characteristics of space structures using the dynamic stiffness 

method. During this period he worked in close collaboration with NASA, Langley Research Center, 

and he was principally involved in the development of the well-established computer program BUNVIS 

(BUckling or Natural VIbration of Space Frames) which was later used by NASA and other 

organizations to analyse spacecraft structures. He joined City University London in 1985 as a Lecturer 

in Aircraft Structures and he was promoted to Senior Lecturer and Reader in 1994 and 1998 

respectively. In March 2003 he was promoted to a Personal Chair in Structural Dynamics. His main 

research interests include dynamic stiffness formulation, aeroelasticity, unsteady aerodynamics, 

composite structures, functionally graded materials, aircraft design, symbolic computation, free 

vibration and buckling analysis of structures and associated problems in elastodynamics. He has been 

responsible for supervising various research contracts as Principal Investigator, involving EPSRC, 

American Air Force Base, Embraer Aircraft Company, amongst others. To date he has published around 

200 papers from his research. He serves in the Editorial Boards of a number of international journals 

and established conferences and he has been a member of the EPSRC Peer Review College since its 

inception.  He is a Fellow of both the Royal Aeronautical Society and the Institution of Structural 

Engineers in the UK and an Associate Fellow of the American Institute of Aeronautics and Astronautics. 

He teaches the subjects of mechanics, strength of materials, aircraft structures, composite materials, 

computational structural mechanics and aeroelasticity, and he has acted as external examiner in five  

British universities for their undergraduate and postgraduate programmes in aeronautical and aerospace 

engineering.  In recognition to his contributions in structural dynamics, aeroelasticity and material 

science, he was awarded the degree of Doctor of Science (DSc) in 2016 by City, University of London. 
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Erasmo Carrera 
   

After earning two degrees (Aeronautics, 1986, and Aerospace Engineering, 1988) at the 

Politecnico di Torino, Erasmo received his PhD degree in Aerospace Engineering jointly 

at the Politecnico di Milano, Politecnico di Torino, and Università  di Pisa in 1991. He 

became Associate Professor of Aerospace Structures and Computational Aeroelasticity 

in 2000, and Full Professor at the Politecnico di Torino in 2011.  

Erasmo  has been visiting professor at the Institute of Static and Dynamics of the 

University of Stuttgart (6 months in 1991 and 15 months in 1995-1996); he spent 3 

months at the department of Engineering Science and Mechanics of Virginia Tech in 

1996; 3 months at Supmeca, Paris, in 2006; and 3 months at the Centre of Research 

Public H Tudor (Luxembourg) in the summer of 2009. In 2013 he has got a joint 

appointment at School of Aerospace, Mechanical and Manufacturing Engineering at 

Royal Melbourne Institute of Technology of University of Melbourne, Australia. In 

2013 as HiCi Scientist Erasmo became member of Distinguished Professor Committee 

of King Abdulaziz University, Jeddah, Saudi Arabia.  

Carrera has been author and coauthor of about 600 papers on the above topics, most of 

which have been published in first rate international journals, including six recent 

books, three of these published by J Wiley & Sons. Erasmo’s papers have had more than 

13000 citations with h-index=62 (data taken from Google-Scholar). Most of the papers, 

in particular those concerning the activities of the last decade, have been coauthored by 

Master students, PhD students, Italian colleagues, foreign professors and scientists from 

industry. Due to his international reputation, Erasmo has held Invited Seminars in 

various European  and North- American Universities, as well as plenary talks in 

international conferences. Erasmo serves as Associate Editor for Composite Structures, 

J Thermal Stress, Computer and Structures, International Journal of Smart and Nano 

Materials and the International Journal  of Aeronautical and Space Sciences. Hi is 

founder and Editor-in-Chief of Advances in Aircraft and Spacecraft Science, first Issue 

January 2014. He acts as Editor-in-Chief of Mechanics of Advanced Structures. He acts 

has reviewers for  about 100 journals and is on the Editorial Board of many international 

conferences. He has in  charge of the Chapter on 'Shells' for the Encyclopedia of 

Thermal Stress published by Springer  as well as of the Section 'Composites' on the 

coming Springer Encyclopedia of 'Computational  Mechanics' . Erasmo  is the founder 

of the non-profit International Conference DeMEASS whose V Edition is scheduled for 

October 2012 in Austria and main organizer of the following conferences: 

ICMNMMCS, Torino, June 2012, co-chaired by Prof A Ferreira; the ECCOMASS  

SMART 13 conference, Torino, June 2013; ISVCS IX, Courmayeur, July 2013. He is 

General  Chairman of ISVCS 11. He has been member of PhD and Habilitation 

committees in Germany,  France, The Netherlands and Portugal.  

He is president of the Piedomnt Section of AIDAA (Associazione Italiana di 

Aeronautica ed  Astronautica) and Senior Member of AIAA.  Erasmo has been Highly 

Cited Researchers (Top 100 Scientist) by Thompson  Reuters in the two Sections: 

Engineering and Materials. He has been con_rmed HiCI in 2015 in the Section 

Engineering. The only aerospace Engineering worldwide. Due to his scientic chivments 

professor Carrera has been recently awarded by the President of Italian Republic, as 

'Honoray Commendator'. It consist of one of the highest award in Italy and it has been 

given to only 73 Italian Scientists from 2003. 
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 Weiqiu Chen 

Weiqiu Chen is a Chair Professor and the Dean of the Department of Engineering Mechanics at Zhejiang 

University. He received his BS and PhD degrees from Zhejiang University in 1990 and 1996, respectively. He 

worked as a postdoctoral research associate at The University of Tokyo during 1997-1999. After he went back 

from Japan, he was immediately promoted to be an associate professor, and became a full professor in 2000. 

His research interests include mechanics of smart materials/structures and vibration/waves in structures. Now 

he is working mainly on mechanics of soft active materials and structures, particularly addressing wave 

propagation in soft periodic materials and structures subjected to large deformation. He has co-authored over 

350 peer-reviewed journal articles with a total number of citations about 5500 and H-index 39 according to 

WoS, as well as three English books on elasticity of transversely isotropic elastic materials, three-dimensional 

analysis of piezoelectric solids, and Green’s functions of anisotropic media, respectively. He now serves as the 

editorial member of several academic journals including Journal of Thermal Stresses, Theoretical and Applied 

Mechanics Letters, and Applied Mathematics and Mechanics (English Edition). Furthermore, he reviews more 

than 100 manuscripts per year for more than 50 journals including Journal of the Mechanics and Physics of 

Solids, International of Solids and Structures, Journal of Applied Mechanics, International Journal of 

Engineering Science, International Journal of Mechanical Sciences, European Journal of Mechanics A/Solids, 

Acta Mechanica, Archive of Applied Mechanics, Proceedings A of Royal Society, Composite Structures, 

Mechanics of Advanced Materials and Structures, Composites Science and Technology, Composites Part B, 

Journal of the Acoustical Society of America, Journal of Sound and Vibration, etc. 
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Prof. Li Cheng 
(http://www.mypolyuweb.hk/mmlcheng/) 

 

 

Li Cheng is currently a Chair professor and Director of Consortium for Sound 
and Vibration Research (CSVR), The Hong Kong Polytechnic University.  

He received his BSc degree from Xi'an Jiaotong University in 1984. He was 
then selected through national selection process and went France to start 

postgraduate studies. He got his DEA and Ph.D. degrees from the Institut National 
des Sciences Appliquees de Lyon (INSA-Lyon), France in 1986 and 1989, respectively, 
in the area of vibration and acoustics. During that period of time, he had chance to 

work with the then Aerospatiale on sound and vibration problems of the Aerian 5 
launcher. He then moved to Canada, working as a post-doctorate fellow and a 

research fellow at Sherbrooke University in Canada. His research endeavor focused 
on aircraft noise and vibration control, supported by Canadair.  

Li started his academic career in Laval University, Canada in 1992, rising from 

an assistant professor to Associate/Full Professor till 2000. During that period of time, 
he undertook a few large-scale research projects with various industries, including 

the one with Bombardier Ltd, on active control of Dash-8 floor panels. Li joined the 
Hong Kong Polytechnic University in 2000, establishing a research group in sound 
and vibration, and becoming its founding director.  

Li published extensively, with over 350 publications including book/book 
chapters and journal/conference papers, receiving over 4000 citations.  He is an 

elected fellow of the Acoustical Society of America, Acoustical Society of China, 
IMechE and the Hong Kong Institution of Engineers. He currently serves as an 
Associate Editor for the Journal of Acoustical Society of America, Associate Editor of 

Structural Health Monitoring: An International Journal, and an editorial board 
member of the International Journal of Applied Mechanics, ACTA ACUSTICA Sinica, 

Chinese Journal of Acoustics and four other international journals.  

Li is now the president of the Hong Kong Society of Theoretical and Applied 

Mechanics. He also served as the Chair/Co-Chair and as a scientific committee 
member (30+ times) in various international conferences, including the general Chair 
of the 46th International Congress on Noise Control Engineering (Inter-noise), Vice-

chair of the World Congress on conditioning Monitoring 2017 and Chair of 14th and 
17th Asia Pacific Vibration Conference. He has been the plenary/keynote speaker in 

over 25 international conferences, including the 23rd International Congress on Sound 
and Vibration in Greece and 15th Asia Pacific Vibration Conference in South Korea. 
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Piotr Cupiał 

AGH University of Science and Technology, Kraków, Poland 

 

 I graduated in 1987 from the Cracow University of Technology, in the field of applied 

and computational mechanics. My MSc thesis considered the problem of the optimum design 

of a circular plate subjected to non-conservative compressive loading. In 1997 I obtained my 

PhD in the area of the application of damping polymers in the vibration suppression of 

layered composite plates. In 2008 I published a monograph “Coupled electromechanical 

vibration problems for piezoelectric distributed-parameter systems”, and in the following year  

I obtained the DSc title (habilitation). I hold a professorship position at the Faculty of 

Mechanical Engineering and Robotics, at the AGH University of Science and Technology. 

I spent three years (1998-2001) at the European Organization for Nuclear Research 

(CERN), in Geneva. My activities at CERN focused on the finite element analysis and 

dynamic measurements, in connection with the Large Hadron Collider (LHC) and the four 

particle physics experiments, being designed then. After leaving CERN I have continued my 

contacts with particle physicists. In recent years, I have been taking part in several research 

projects within the European neutrino physics collaboration. In this framework, I coordinated 

the design of specialized equipment used in advanced physics experiments, subjected to very-

short-duration pulses of magnetic and thermal character. 

Since 2007 I have been a member of the editorial board of the Journal of Sound and 

Vibration. I am the editor-in-chief of the quarterly Mechanics and Control, and a member of 

the editorial board of the Journal of Theoretical and Applied Mechanics. Starting from this 

year, I am the chairman of the biennial conference on Active Noise and Vibration Control 

Methods; for several years now I have been a member of the advisory committee of ISVCS.  

I am a member of the Section of the Dynamics of Systems, working under the auspices of the 

Polish Academy of Science. 

 I am married to Gabriela and we have one son. I have always been very fond of the 

mountains, hiking in the summer and skiing during winter. 
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Sergio De Rosa 
Professor 
Department of Industrial Engineering – Aerospace Section 
University of Naples “Federico II”, Italy 
 

 
From the beginning of my research activity, I was involved in the engineering fields concerning the structural 
dynamics, the vibroacoustics and the fluid-structure interaction in large sense. 

The thesis work concluded the five-year Italian degree in aerospace engineering in 1998. It was focused on 
the assembling of a predictive vibroacoustic model for the ATR-42 fuselage. Large part of that time was 
usefully spent on the pages of vibration of plates and shells. In the same year, I became researcher at the 
Italian Aerospace Research Center, CIRA, where continued my studies and applications in the vibroacoustic 
fields. 

In 1992, I arrived as researcher at University of Naples “Federico II” at the Department now named Industrial 
Engineering - Aerospace Section: my entire academic career was spent in the Aerospace Structures sector. 
In parallel with the research activity, I was also guided to the teaching stuff, having from 2001 the full 
responsibility of courses.  

I belong to a group named pasta-Lab: laboratory for promoting experiences in aeronautical 

structures and acoustics. 

Since 1990 I was involved in the main research programmes funded by the European Union in the 
aerospace sector. The actual H2020 projects are: 
 

 2016-2019 MSCA-EJD, VIPER (Vibroacoustics of periodic structures, European Joint Doctorate): 
http://viper.ec-lyon.fr 

 2016-2019 Clean Sky 2 action Airframe-ITD, CASTLE (Cabin system design toward passenger 
wellbeing) 
 

The targets of the research activities were to study, investigate and define numerical and experimental 
procedures and/or tools to be used as predictive methods, all inside the paradigm of increasing complexity: 

 Definition of SAMSARA, Similitudes and Asymptotical Modelling for Structural Acoustics Researches 

and Applications. 

 Stochastic response of structural and fluid-structural systems under random and convective 

excitations. 

 Convective effect on the acoustic radiated power by structural components. 

 Influence of the uncertainties on the dynamic system response. 

 

I am still convinced that only a full interaction among human beings can promote the knowledge at highest 
levels. The research and teaching mechanics can’t be a passive process but requires that all the involved 
persons play (and risk) something, hopefully with a smile .  
 
This is the 3rd time for me to be at ISCVS, and I will be very glad to meet again some of the persons who 
guided my adventure.  
 
Nevertheless, I am (very) lazy researcher but I know to be a loquacious friend, being passionate of 
photography, blogging and micro-blogging, music, modern literature, comics.  
[Many things: too much, maybe.] 
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Hu Ding, Ph.D. 

 

Shanghai Institute of Applied Mathematics and Mechanics, 

Shanghai University 

149 Yan Chang Road, Shanghai 200072, China 

Email: dinghu_3@hotmail.com 

http://www.dvc.shu.edu.cn 

 

Education: 

09, 1998 - 09, 2002 HeFei University of Technology, Bachelor Degree; 

09, 2002 - 09, 2005 HeFei University of Technology, Master Degree; 

09, 2005 - 03, 2008 Shanghai University, Doctor Degree: Mechanics; 

04, 2012 - 04, 2013 University of Toronto, Visiting Professor; 

09, 2016 - 03, 2017 Duke University, Visiting Scholar. 

 

Conducted research activities and research interests: 

Nonlinear vibration of axially moving continua; nonlinear vibration and control of 

continua. 

 

Message: 

Two years ago, in Colorado, I spent a fantastic week. Met a lot of very nice people. 

Able to discuss research work with these kind people. Talk about the problems 

encountered in the research work and the significance of the study. Really very 

interesting and helpful. I am very excited and look forward to being able to attend the 

ISVCS series international symposium again. 

A photo from ISVCS10 in Colorado in 2015: 
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Professor Moshe Eisenberger 

The Sigmund Sommer Chair in Structural Engineering 

Faculty of Civil and Environmental Engineering 

Technion – Israel Institute of Technology 

Haifa, Israel 

 

BSc. Technion (1977), MSc. Stanford University (1978), PhD. Stanford University (1980).  

Since 1980 on the faculty at the Technion. 

Visiting positions:  Carnegie Mellon, PA (1987-9, 1993), City University, Hong Kong (2006), 

Waikato University, NZ (2015), University of Lisbon, Portugal (2015), and Bologna 

University, Italy (2015). 

Research: Computational Structural Analysis – Static, Vibration, Stability of Beams, Plates 

and Shells, made from isotropic, composite and FGM. 

My professional interests have shifted within the broad discipline of computational 

mechanics: in the early 80’s, at the beginning of the PC era I was mostly involved in 

structural analysis and computer methods for frames and finite elements calculations. 

Then I became more interested in stability and vibration analysis of continuous systems, 

starting with rods and beams with variable cross section, and moving to plates and shells 

with variable thickness, made of isotropic, composite, and functionally graded 

materials. All these analyses were performed using the dynamic stiffness method and 

thus produced exact results, which have since served as benchmark values for 

comparison by other researches that developed various computational methods. 

Currently I am working on getting "exact" results for vibration and buckling of plates, 

and hopefully a super convergent plate element. 

 

I am married to Dorit and have two children, Gilad and Yarden, and all have been with 

me in some of the previous ISVCS meetings. For many years I have been biking (mostly 

road), and hiking and climbing mountains. I am satisfied with the way I can combine 

work and travel in my life! 
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Mark S. Ewing 
University of Kansas 

 
 I grew up interested in science and mathematics, largely due to my fascination 
with the U.S. spacecraft I used to watch launch from Cape Canaveral—when I lived in 
nearby Orlando, Florida.  I received my BS in Engineering Mechanics from the U.S. 
Air Force Academy, then began a 20-year career in the Air Force.  I served for four 
years in turbine engine stress and durability analysis where I was an “early” user of 
finite element analysis for hot, rotating turbomachinery.  I then served a two-year 
assignment in turbine engine maintenance and support, which was less technical, 
but eye-opening.  During these early years—in my spare time—I earned an MS in 
Mechanical Engineering from Ohio State University.    
 

With an MS in hand, I returned to the Air Force Academy to serve on the 
faculty as an Assistant Professor.  After two years, I returned to Ohio State to 
complete a PhD.  As a student of Art Leissa’s, I focused on the combined bending, 
torsion and axial vibrations of “stubby” beams, thereby establishing my interest in 
the vibrations of continuous systems.   

 
After returning to and teaching at the Academy for six years, I was assigned to 

the Air Force Flight Dynamics Lab, where I worked on two interesting projects.  The 
first was the development of a structural design algorithm capable of, among other 
things, “maximizing” the separation of two natural frequencies.  The utility of this 
endeavor was to allow the design of aircraft wings for which the bending and 
torsional natural frequencies are sufficiently separated (in frequency) to avoid flutter.  
The other interesting project was the analysis of the effect of convected 
aerodynamic loads on a missile.   

 
I am now on the Aerospace Engineering faculty at the University of Kansas.  

My current research interests are in structural acoustics, which is a topic of 
increasing interest to aircraft manufacturers.   In recent years, I have focused on the 
best way to characterize and estimate structural damping for built-up structures.  All 
the test articles I’ve used to validate my work through experimentation are simple 
structural elements, namely beams and plates. 

 
I have a great love of the outdoors, and of the mountains in particular.  When 

Art Leissa asked me to help organize the first International Symposium on Vibrations 
of Continuous Systems—held in 1997—and he toId me he wanted to meet in the 
mountains, I really got excited.   I look forward to the 11th Symposium in Llanberis as 
a time to visit with long-time friends and colleagues. 
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Biographical Information

Matteo Filippi

MUL2, Department of Mechanical and Aerospace Engineering
Politecnico di Torino,

Corso Duca degli Abruzzi 24, 10129 Torino, Italy
matteo.filippi@polito.it

MUL2

Matteo Filippi is currently a research fellow of the research group MUL2 (http://www.mul2.polito.it)
at Politecnico di Torino. From the same university, he received a Bachelor’s (March 2009) and a
Master’s (December 2011) Degree in Aerospace Engineering.Afterward, he started his Ph.D.
that has been received in March 2015. During this period, he spent three months at School of
Aerospace, Mechanical, and Manufacturing Engineering at Royal Melbourne Institute of Technol-
ogy of University of Melbourne, Australia.

From the beginning of his research activity, Matteo was involved in the development of high-
fidelity finite elements for dynamic and stress analyses of a wide range of structures. In par-
ticular, great attention has been given to response of structures made of composite, functionally
graded, and viscoelastic materials. He extended the higher-order one-dimensional theories ob-
tained through the Carrera Unified Formulation to the rotor dynamics field. The versatility of the
proposed approach enables the study of dynamics of axial rotors and rotary-wing configurations.
Furthermore, aeroelastic studies have been performed by combining the structural models with
steady and unsteady aerodynamic theories.

Matteo Filippi has authored more than 25 scientific papers most of which have been published
in first rate international journals. He is serving as reviewer for a number of international jour-
nals such as "Journal of Sound and Vibration", "Journal of Vibration and Acoustics", "Composite
Structures", and "Mechanics of Advanced Materials and Structures". He is involved in many re-
search programs supported by the European Space Agency and the European Union in cooperation
with many European industrial and academic partners.
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Stan Hutton 

 

 

 

 

1941 Born in Kidderminster England; 

 

1960 Undergraduate studies at Nottingham University in Civil Engineering; 

 

1963 Site Engineer, Wilfa Nuclear Power Station, Angelsey, Wales; 

Site survey, concrete design engineer, construction supervision. 

 

1965 MASc in Civil Engineering, Calgary University, Canada; 

Thesis: The behaviour of partially prestressed concrete; 

 

1966 Structural Design Engineer, H.A. Simons Ltd, Vancouver, Canada; 

Design and analysis of pulp and paper mills; 

 

1968 Ph D in Applied Mechanics, UBC, Vancouver, Canada; 

Thesis: The finite element method - a Galerkin approach. 

 

1972 Lecturer in Civil Engineering, Adelaide University, South Australia; 

Research into the behaviour of bridges subjected to moving loads and earthquake  

response of buildings. 

 

1978 Professor in Mechanical Engineering, UBC, Vancouver, Canada 

Research into the behaviour of wood machining equipment. 

 

2003 Emeritus Professor, Mechanical Engineering, UBC 

Continued supervision of graduate students and consulting work with FPInnovations. 
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Sinniah Ilanko 

The University of Waikato 

Te Whare Wananga o Waikato 
 

e-mail:   < Ilanko@Waikato.ac.nz> 

 

Ilanko was born in the north of Sri Lanka (Jaffna), and according to the common Tamil 

practice, he does not have/use a family name. Ilanko is his given name and Sinniah is his 

late father’s given name and conveniently remains informal. 

 

He graduated from the University of Manchester (U.K) with a BSc in civil engineering 

and also obtained an MSc from the same university under the supervision of late Dr S.C. 

Tillman, investigating the effect of initial imperfections on in-plane loaded rectangular 

plates. His move to England at an early age was the result of his late brother 

Senthinathan’s foresight on the Sri Lankan political situation. After working as an 

assistant lecturer at the University of Peradeniya in Sri Lanka for about two years, he 

commenced doctoral studies at the University of Western Ontario under the supervision 

of Professor S.M. Dickinson, continuing his earlier research on vibration behaviour of 

initially imperfect in-plane loaded plates. Soon after completing his PhD, he worked as a 

postdoctoral fellow at the UWO for about six months until he joined the University of 

Canterbury in 1986. He continued his academic career at Canterbury for nearly 20 years, 

in various positions, as lecturer, senior lecturer and associate professor until he joined the 

University of Waikato in 2006. In 2012 he became a full professor. He has served as the 

Chairperson and later the Head of School of Engineering from January 2013 to December 

2015. He has also served as the Head of Mechanical Engineering Department at 

Canterbury for a year (2001-2202) and worked as a visiting professor at the Annamalai 

University (India) and Technical University of Hamburg-Harburg during his study 

leaves. In 1997, he was awarded the Erskine Fellowship and visited several universities 

in Australia, Canada, Singapore and the U.K. 

 

His research areas include vibration and stability of continuous systems, numerical 

modelling and adaptive mechanisms. He has published 41 journal paper,s and in 2014 

authored a book “The Rayleigh-Ritz Method for Structural Analysis” jointly with Dr Luis 

Monterrubio and Dr Yusuke Mochida. Since January 2009, he is serving as the Subject 

Editor for Journal of Sound and Vibration, for analytical methods for linear vibration.  

 

He is also interested in computer-aided learning and has developed and used several 

interactive lectures and tutorials for teaching Mechanics of Materials and Vibration, as 

well as computer based tutorials and games for learning/teaching Tamil language.  

 

He is married to Krshnanandi and they have two daughters, Kavitha and Tehnuka. 

Ilanko’s birth family is scattered across the globe (Australia, Canada, New Zealand, the 

U.K. and the U.S.A.) because of the civil war in Sri Lanka which has now ended. 
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David Kennedy 
Professor of Structural Engineering 

School of Engineering, Cardiff University, United Kingdom 

 

David Kennedy obtained a First Class Honours degree at the University of Cambridge in 1978 and a 

PhD in the area of efficient transcendental eigenvalue computation from the University of Wales, 

Cardiff in 1994. 

 

From 1978 to 1983 he was employed as an Analyst/Programmer for the computer services company 

Scicon Ltd, where he worked on the development of the Mathematical Programming software 

SCICONIC/VM.  In 1981 he was awarded a 2-year BP Venture Research Fellowship in Non-linear 

Optimization, supervised by the late Professor Martin Beale. 

 

In 1983 he was appointed as a Research Associate in the University of Wales Institute of Science 

and Technology, which was merged into Cardiff University in 1988.  Working under the supervision 

of Professor Fred Williams and funded under a collaborative agreement with NASA, he co-

ordinated the development of the space frame analysis software BUNVIS-RG which was released 

by NASA to US users in 1986/87.  Further collaboration with NASA and British Aerospace (now 

BAE Systems) led to the development and successive releases, starting in 1990/91, of VICONOPT, 

a buckling and vibration analysis and optimum design program for prismatic plate assemblies.  Both 

of these programs use analysis methods based on the Wittrick-Williams algorithm. 

 

He was appointed to a Lectureship in the School of Engineering in 1991, promoted to Senior 

Lecturer in 2000, Reader in 2005 and Professor in 2009.  He has continued to manage the 

collaborative development of VICONOPT, successfully co-supervising 16 PhD students and holding 

Research Council grants on parallel computing, aerospace panel optimization, local postbuckling 

and mode finding.  He has visited NASA Langley Research Center several times, and in 2007 he 

undertook a 6-month secondment to Airbus UK, funded by a Royal Society Industry Fellowship.  

Since 2010 he has been a Deputy Head of the School of Engineering with responsibility for staff 

matters. 

 

Through the Cardiff Advanced Chinese Engineering Centre, Professor Kennedy has participated for 

over 25 years in collaborative research projects with leading Chinese universities, including 

Tsinghua University, Dalian University of Technology and Shanghai Jiao Tong University.   

 

Professor Kennedy is the author of nearly 200 publications of which approximately 50% are in 

refereed journals of international standing. 

 

He lives with his wife Helen in a village near Cardiff, where he plays the church organ and sings in 

a community choir.  David and Helen are both learning Welsh and will try to teach you some basic 

words during the Symposium.  
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Xiang Liu, PhD 
Specially-appointed Professor 

School of Traffic & Transportation Engineering, Central South 
University, China 

 
Xiang Liu (XL) was born in Changsha, a city in the central south of China, in 1985. 
His research interests include elastodynamics, vibro-acoustics, structural instabilities, 
aeroelasticity, composite structures and metamaterials. 
XL received his Bachelor’s and Master’s degrees with First Class in Civil and 
Geotechnical Engineering respectively. Then he joined University of Glasgow in 2010 
to work for his PhD in Applied Mechanics which was fully funded by an EPSRC grant. 
His PhD research was on surface instabilities of membranes, plates and solids which 
are essentially instabilities of continuous systems by using asymptotic and direct 
numerical simulations. The research was focused on both the mathematical and 
physical aspects of the problems and important insights were gained. Three journal 
papers were published by XL from his PhD. The project enabled XL to acquire valuable 
knowledge and expertise in structural instabilities and eigenvalue problems both from 
mathematical and mechanical perspectives. 
After completing his PhD, XL joined City, University of London in 2013. He worked 
as a Research Fellow with Prof. J. Ranjan Banerjee (RB) on an EPSRC project entitled 
“Dynamic Stiffness Formulation for Plates with Arbitrary Boundary Conditions 
through the Solution of the Biharmonic Equation”. This project is against the 
background that the exact solution of the biharmonic equation with any arbitrary 
boundary conditions has always been a challenging task not only for the engineers but 
also for the mathematicians for well over two centuries. To this end, a novel method 
called the spectral dynamic stiffness method (SDSM) has been proposed by XL and RB 
for exact free vibration analysis of isotropic and anisotropic plate assemblies with 
arbitrary boundary conditions (BCs). A set of novel related techniques have been 
developed so that the new SDSM becomes unconditionally stable with remarkable 
accuracy and computational efficiency. It has been established that the SDSM has as 
much as two orders of magnitude computational efficiency when compared with the 
conventional FEM. The superiority of the SDSM over the FEM will be even more 
pronounced within the medium to high frequency ranges when the FEM can be 
prohibitively expensive in computer time and the results can become unreliable. 
Additionally, a general theory has been developed to account for plate assemblies with 
arbitrary non-uniformly distributed elastic supports, elastic coupling constraints as well 
as mass attachments. This theory has no-doubt broadened the applicability of the SDSM 
for real life structures. More recently, the SDS theory has been generalised to be applied 
to general plane elastodynamic problems. So far, the SDSM has been applied to many 
engineering structures such as aircraft wings, multi-span bridge decks, optical beam 
pointing system, shear-walls, ultrasonic motors, amongst many others.  
In February 2017, XL received a specially-appointed professorship from Central South 
University (China), and now his main work lies in the vibration and noise control, 
structural instabilities and aeroelasticity in rail transportation engineering. 
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Brian Mace 
 

 

Brian is Professor of Mechatronics in the Department of Mechanical Engineering at the 

University of Auckland, which he re-joined in 2011. Prior to that he was Professor of Structural 

Dynamics at the Institute of Sound and Vibration Research, University of Southampton. Brian’s 

research interests fall into two general areas. The first concerns structural dynamics. Interests 

include wave methods, a hybrid wave and finite element approach to noise and vibration 

modelling, periodic structures and uncertainty modelling, including energy methods and SEA. 

The second general area concerns smart structures and noise and vibration control using active, 

semi-active or adaptive-passive methods. Examples include control of vibration transmission, 

active vehicle suspensions, active constrained layer damping, energy harvesting and the use of 

smart materials in self-tuning, adaptive vibration control devices.  

 

 

 

BRM, 30 March 2017 
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ANDREI MITRAKIN 

 

Andrei Metrikine is Antoni van Leeuwenhoek Professor at the Faculty of Civil Engineering and 

Geosciences of the Delft University of Technology, the Netherlands. He holds the chair of 

Dynamics of Solids and Structures and is Head of the Offshore Engineering Section. He is also 

Deputy Editor-in-Chief of the Journal of Sound and Vibration and holds the part-time International 

Chair of Offshore Engineering at the Norwegian University of Science and Technology, Trondheim, 

Norway. 

Andrei graduated in radio-physics from the State University of Nizhniy Novgorod, Russia in 1989 

and received his PhD and DSc in 1992 and 1998 in St.Petersburg, Russia.  In 1994-1998 he held a 

number of post-doctoral positions, including one at the Institute for Mechanics of the Hannover 

University, Germany awarded by the Alexander von Humboldt foundation. Since 1999 Andrei is 

employed by TU Delft. Currently Andrei’s research interests focus on vibrations of and waves in 

structures that are in contact with solids and fluids. The main engineering application areas of his 

research are Offshore Engineering, including Offshore Wind and Ocean Energy, and Railway 

Engineering. 
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Wolfgang Seemann 

 

Wolfgang Seemann was born on 31 March, 1961 in Keltern (Germany, Baden-Württemberg). After 

school he studied mechanical engineering at the University of Karlsruhe from 1980 to 1985. After 

civil service (1985-1987) he worked as a PhD-student at the Institute of Applied Mechanics at the 

University of Karlsruhe (now Karlsruhe Institute of Technology). The PhD under the supervision of 

Prof. Jörg Wauer was finished in 1991 with a thesis on 'Wave propagation in rotating or prestressed 

cylinders'. In 1992 he joined the group of Peter Hagedorn at Darmstadt University of Technology to 

work in a post-doc position until 1998 when he got a professorship on machine dynamics in 

Kaiserslautern. In 2003 he got an offer to go back to the University of Karlsruhe on the chair of 

Applied Mechanics. 

His previous and current research interests are in fluid bearings, ultrasonic motors, nonlinear 

vibration, multibody dynamics, vibration of continuous systems, active materials, nonlinear 

phenomena in piezoelectric materials, humanoid robots, dynamics of human motion, mechatronic 

systems, road-vehicle interaction, rotor dynamics and wave propagation. 

Besides his duties in teaching and research he is responsible for the French-German cooperations of 

the KIT. 
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Alfonso Pagani 

Assistant professor 

MUL2, Department of Mechanical and Aerospace Engineering 

Politecnico di Torino, Italy 

www.mul2.com  

 

Alfonso Pagani is professor assistant at the Department of Mechanical and Aerospace Engineering, 

Politecnico di Torino. He earned a Ph.D. in Structural Dynamics at City University of London in 

2016 and, earlier, a Ph.D. in Fluid-dynamics at Politecnico di Torino.  

Pagani is a member of the MUL2 group (www.mul2.com) since 2011 and his research activities are 

related to the development of refined models for aerospace structures, composites, bio- and fluid-

mechanics, post-buckling. He also spent research periods at Purdue University in 2016, where he 

worked on the implementation of advanced models for micro-structural analysis of composite 

materials with Prof. W. Yu; at RMIT Melbourne in 2014, where he developed models for flutter 

analysis and gust response of composite lifting surfaces; at Universidade do Porto in 2013, where he 

carried out investigations about the use of RBFs for the solution of equations of motion of refined 

beam models; and at London City University in 2012, where he formulated higher-order, exact, DSM-

based 1D models. Together with Prof. Carrera and his research group, Pagani recently extended CUF 

for the geometrical nonlinear response and post-buckling analysis of metallic and composites 

structures.  

He is involved in the Marie Skłodowska-Curie actions FULLCOMP and COMPOSELECTOR. 

Moreover, Pagani acts as team member and co-investigator for a number research projects together 

with International partners and Institutions, such as ENSAM Bordeaux for the development of 

advanced optimization methodologies for VAT composites, and EMBRAER S.A. for the tailoring of 

composite wing structures and global/local analysis. 

Pagani is the co-author of some 40 articles in International Journals and currently serves as assistant 

editor for Advances in Aircraft and Spacecraft Structures. 

 

ISVCS11

page  78 of 81.

http://www.mul2.com/
http://www.mul2.com/


Francesco Pellicano 

 

Francesco Pellicano is Aeronautical Engineering and Ph.D. in Theoretical and Applied, he 
is currently Associate Professor, vice-Head of the Centre Intermech MoRe and committee 
president of 2 BsC and 3 MsC programmes. He is coordinator of EU Regional projects: 
METaGEAR (Gears, Materials, Robotics), INDGEAR (condition monitoring) and HPGA 
Fortissimo (applications of high performance computing); he was coordinator of several 
international and national projects. He published 2 Books, more than 50 Journal papers 
and more than 100 conference papers. Bibliometry: h-index 23, more than 1500 citations. 
His research activities are: gears experimental and numerical stress and vibration 
analysis; nonlinear vibrations of structures; vibration control; axially moving systems; 
nonlinear vibration of shells with fluid structure interaction, vibration of carbon nanotubes; 
non-smooth dynamics; Chaos; Nonlinear Time Series Analysis; Forecasting Methods in 
Oceanography. 
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 Anand V. Singh 
 

After graduating with B. Sc. in Mechanical Engineering from Ranchi University, I came to Canada 

in September 1969 to join the school of graduate studies at the University of Ottawa and completed  

M. A. Sc. (1971) and Ph. D. (1975) degrees.  The research area was the free vibration of sandwich 

spherical shells.  

 

After graduation from the University of Ottawa, I worked as a Defence Scientist at the Defence 

Research Establishment Suffield (DRES) near Medicine Hat Alberta from January 1978 to April 

1981.  Then, I accepted a design engineer position in the Civil Design Department of Ontario Hydro 

in Toronto and worked there until December 1984.  That is when I came to the Western University 

to teach machine component design and the finite element methods.  At Western, I taught other 

courses viz.  graphics and engineering drawings, dynamics, kinematics and dynamics of machines, 

modern control systems, theory of plates and shells, continuum mechanics, computational methods 

in engineering to name a few.  I worked with some remarkable graduate students in the field of 

computational solid mechanics dealing with the linear and nonlinear vibrations of plates and shells.   

I retired as of July 01, 2016 and am a Professor Emeritus at the Western University. 

 

About the family: I was married to Bimla about 50 years ago and we have two grown up children. 

Bidhi, our son, is married to Swati and they have a son named Akshaj.  Our daughter Shikha just 

completed Ph. D. in Fisheries and Wildlife from the Michigan State University, East Lansing.  

Bimla and I attended eight of the last ten ISVCS symposia.  This is the ninth.  
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Andrew Watson 

Lecturer of Aerospace Structures 

Department of Aeronautical and Automotive Engineering 

Loughborough University, United Kingdom 

 

Andrew obtained his undergraduate and higher degrees from Cardiff University.  His 
PhD looked at the stability analysis and optimisation of light weight structures.  After 
two post-doctoral appointments at Cardiff Andrew joined Loughborough University as 
a member of academic staff in 2004. 

His research includes buckling and postbuckling of aerospace panels; vibration of 
beams and quantum graphs.  Buckling, vibration and quantum graph problems can 
all be approached by using the Dynamic Stiffness Method along with the Wittrick-
Williams algorithm.  Andrew is currently developing a set of tools to provide the user 
with eigenvalue and eigenvector solutions to any shaped graph with a differential 
operator.   

Other research includes experimental and numerical modelling of damage in 
composite panels and numerical simulation of geometric nonlinear beams subject to 
bending and compression.  More recently Andrew has been looking at fossil fuels 
and other finite resources.  To facilitate this he is developing analytical methods to 
optimise structures where the objective function can be mass, energy costs or 
environmental degradation.  His interest in resource demand reduction is opening a 
new area of research and is a subject area for delivering talks on the subject at 
various academic institutions and schools. 

In his spare time he likes to keep up with current affairs and enjoys walking and 
sailing.   

 

 

 

ISVCS11

page  81 of 81.


