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Preface

The International Symposium on Vibrations of Continuous Systems is a forum for
leading researchers from across the globe to meet with their colleagues and present both
old and new ideas on the field. Each participant has been encouraged to either present
results of recent research or to reflect on some aspect of the vibration of continuous
systems which Is particularly interesting, unexpected or unusual. This type of
presentation-- of which there are several--was proposed to encourage participants to draw
on understanding obtained through--in many cases--decades of research.

The location chosen for the Symposium is one of the most beautiful towns in the
United States--Estes Park, Colorado. With nearby Rocky Mountain National Park, this
area gives a backdrop of unsurpassed natural beauty. Because of this location, mornings
of the symposium have been kept free to permit hiking, sightseeing and mountain climbing,
in order to avoid the thunderstorms which come often in the early afternoons. As such, a
hike has been planned for each morning of the Symposium.

This Proceedings contains short summaries of the presentations to be made at the
Symposium. An accompanying addendum is a collection of short biographical sketches
submitted by many of the participants.
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EFFECT OF LAYUP ON THE BEHAVIOR OF COMPOSITE STRUCTURES

Serge Abrate
Department of Technology
Southern Illinois University
Carbondale, IL 62901-6603

Laminated composite materials can be tailored for each application by properly
selecting the layup. The total number of plies, the thickness of each ply and the fiber
orientation for each ply are variables affecting the behavior of the laminate. A maxi-
mum of 12 nondimensional lamination parameters describe the effect of lamination for
the most general layups regardless of the number of plies. For symmetric laminates in
bending, only four such parameters are needed and in most practical cases the effect of
two of those parameters is negligible. Therefore, all symmetric laminates can be consi-
dered for optimization purposes by studying the effect of only two parameters. A review
of the literature on optunum design of composite structures' shows that the stiffness
invariant formulation is seldom used and that many studies do not consider all possible
layups in the optimization in order to reduce the number of design variables. Another
limitation of previous studies was the limited nature of the results presented. Typically,
results were given for a given geometry, on set of boundary conditions, and for one
material system. Studies of the optimum design of rectangular?®® and triangular®*? sym-
metrically laminated plates using the stiffness invariant formulation and a variational
approximation method allowed to obtain results for a large number of cases with various
boundary conditions. This work was extended to optimize the buckling load® and mini-
mize the thermal deflections® of composite plates This presentation will give an
overview of the results obtained and suggestions for future work.

For symmetrically laminated plates, the transverse and in-plane motions are
uncoupled and the motion is governed by the equation
+2M, M +p=0

where p is the applied pressure for static problems or the inertia load -m i—‘:'— for

at
free vibration problems. The moment resultants M = [M,, M,, M, |" are related to the

curvatures x = [-w _,-w _,-2w _]T by M = Dx and the elements of the bend-

ing rigidity matrix can be written as
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in terms of the laminate thickness h, the stiffness invariants U; which depend on the
elastic properties E,, E,, G,, and v,,, and the lamination parameters defined as

12 7 12
(o = = fzzcos20dz, Co = — fzzcosz.‘wdz,
h? 4, h? 3,

12° 2
Cy = fzzsinZOdz, pp = fzzsin?.ﬁoosZOdz
h? h?
w2 ‘w2

The effects of ply orientation and ply thickness distributions through the thickness of the
laminate are included in these four parameters which for all symmetric laminates regard-
less of the number of plies. As the number of plies becomes larger than 8, the last two
lamination parameters become small and their effect on the behavior of the structure
becomes negligible®. Then, only two parameter need to be considered when studying the
effect of layup and determining the optimum design for a given application.

For simple geometries, the solution to the structural problem is found most effi-
ciently using a variational approximation method. Here, the Rayleigh-Ritz method with
polynomial approximation function was used to model rectangular or triangular plates
with arbitrary support conditions along the edges and internal line supports. For
example, for rectangular plates extending from 0 to a in the x-direction and from 0 to b
in the y-direction, with a line support along x=c, clamped along x=0 and x=a, simply
supported along y=0 and free along y=b, the displacements can be approximated by

N

w =Y cd(xy)

I=1

The approximation functions are taken as

é(xy) = x' "2yl (x - a)* (x - ¢)

where i and j vary from 1 to p and 1 to q respectively, and p.q = N. Rectangular and
triangular plates with arbitrary aspect ratio, support conditions along the edges and
intermediate line supports can be analyzed. Point supports are introduced using the
method of Lagrange multipliers.



This approach is used to determine the best fiber orientations for maximizing the

fundamental natural frequency of laminated plates with various shapes, aspect ratios and
boundary conditions. Results indicate that truly optimum layups can be selected with
this approach by considering all possible symmetric laminates. The optimal layup is not
necessarily an angle-ply laminate or a cross-ply laminate and depends strongly on the
support conditions and the aspect ratio of the plate. In most cases, the effect of material
properties on the optimal layup is small for most of the material systems currently availa-
ble. Therefore, a layup that is optimum with one material system will be nearly opti-
mum for other material systems. The same approach was used to determine optimal
fiber orientations to maximize buckling loads and to minimize thermal effects.
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Pure Shear Modes of Free Vibration of Rectangular
Parallelepipeds

Moinuddin Malik and Charles W. Bert
School of Aerospace and Mechanical Engineering
The University of Oklahoma, Norman, OK 73019-0601

Using three-dimensional displacement-equilibrium equations of the theory of elasticity, exact
expressions for the natural frequencies of pure shear vibrational modes of rectangular paral-
lelepipeds simply supported on four vertical sides were first given by Srinivas et al. (1970).
In the present work, rectangular parallelepipeds having two opposite vertical sides simply sup-
ported and general boundary conditions on the two other opposite vertical sides are considered.
Exact closed-form expressions for frequencies of various types of pure shear modes for vibration
of five other types of boundary conditions are given.

Consider an isotropic-material parallelepiped bounded by the vertical planes z = 0, a and
y = 0, b, and the top and bottom planes z = 0, h. The governing elasticity equations of
the parallelepiped undergoing simple harmonic oscillations in a principal vibratory mode are
written in a nondimensional %orm as (Srinivas et al., 1970)

VAU, V, W)+ [1/(1 = 20)](85, A, ad.)® = —Q*(U, V, W) (1)

where (U, V,W) = (u,v,w)/h are the dimensionless displacement components in the z,y, and
z directions, respectively; (X,Y,Z) = (z/a,y/b, z/h) are the normalized coordinates;

V2 = 8,2 + X20,, + 0%,

is the Laplacian operator;
O = 0.U + N9,V + ad. W

1s the volume dilatation; d indicates partial derivatives with respect to the X,Y, and Z coordi-
nates as indicated by its subscripts, e.g.,

0 = 0/8z, 8., = 8*/0z%

a = a/h is the lateral aspect ratio; A = a/b is the in-plane aspect ratio; v is the Poisson’s ratio;
and {2 is the dimensionless frequency

0 = (pa?/G)w?

in which w is the circular frequency (rad/s); and G and p are, respectively, the shear modulus
and density of the material.

Let the parallelepiped be simply supported on the sides z = 0, a, i.e., X = 0, 1; the

boundary conditions on these sides are prescribed by the normal traction and the tangential
displacements being equal to zero so that

0:.U=0, V=0, W=0 at X =0,1 (2)

The displacement components satisfying the boundary conditions on the z-sides, eqn (2),
may be expressed as

U=U(Y,Z)cosmX, V=V(Y,Z)sinmX, W =W(Y,Z)sinmX (3)

where m = mx and m is an integer.



The sides y = 0, b may be either simply supported, clamped, or free. At a simply supported
y-side, with zero normal traction and zero tangential displacements, the boundary conditions
in terms of reduced displacement variables become

U=0, 8,V=0, W=0atY =0 and/or 1 (4)
At a clamped y-side, v = 0, v = 0, and w = 0 so that
U=0, V=0, W=0atY =0 and/or 1 (5)

At a free y-side, the conditions of components of traction equal to zero may be written as
AU +8;V =0, 9,U+A(1-v)/v]d,V + ad,W =0,
ad,V +A0,W =0at Y =0 and/or 1
and using eqns (3), these conditions become
A, U +mV =0, mU—A(1-v)/v]d,V +ad,W =0,

ad.V + X9,W =0 at Y =0 and/or 1 (6)

The lateral surfaces of the parallelepiped are assumed to be free so that the traction com-
ponents are zero on z = 0, h. These conditions may be written as

ad.U +0:W =0, ad.V+I3,W =0,
9:U+ 29,V +a|(1—v)/v]8.W =0 at Z =0 and/or 1
which, on using eqns (3), become

a0, U+mW =0, ad.V+X,W =0, mU-13,V—-a[(1-v)/v],W =0at Z=0and 1 (7)

In case of the pure shear modes of vibration, the volume dilatation equals zero, i.e.,
O =0.U+ A3,V + ad.W =0 (8)

and consequently, eqns (1) are reduced to the following equations |
VAU, V,W) = -Q*U,V, W) (9)

It is noted that there is no coupling in these equations. However, the displacements in pure
shear modes are indeed coupled; the coupling comes through the boundary conditions.

Using eqns (3) in eqns (9), one obtains the governing equations of pure shear modes of
vibration in terms of the reduced displacement variables as

{m?—A%0,, - ’0.. }(U,V,W) = Q}0,v, W) (10)

The boundary conditions on simply supported or clamped y-sides remain the same as given
by eqns (5) and (6). However, on a free y-side, the condition of zero normal traction in eqns
(7) is simplified due to eqn (8). The boundary conditions on a free y-side may be written as

AU +mV =0, 8,V=0, ad,V+X9,W =0at Y =0 and/or 1 (11)

Similarly, the condition of zero normal traction in eqns (8) is simplified due to eqn (16). The
boundary conditions on the lateral surfaces may be written as

ad,U+mW =0, ad,V+A0,W =0, .W =0at Z=0and 1 (12)



The solutions of eqns (18) may be obtained consistent with the boundary conditions and
the condition of zero dilatation, eqn (16), which in terms of the reduced displacement variables
is _ _ -

—mU + A9,V + ad,W =0 (13)

With two opposite sides simply supported and the other two sides having boundary condi-
tions as dual combinations of simply supported, clamped, and free conditions, the total number
of rectangular parallelepiped configurations is six. The possible forms of solutions for pure shear
modes of vibration of these parallelepipeds are given in Table 1. Following a now-standard no-
tation, the parallelepipeds are designated by four letters ordered to indicate the boundary

conditions of sides = 0,y = 0,z = a, and y = b. The letters S, C, and F denote simply
supported, clamped, and free conditions, respectively.

The pure shear modes of vibration may be of three types. With dilatation # = 0 in each case,
these modes are: a thickness-twist mode in which the transverse shear stresses 7,. = 7., = 0,
a torsional mode in which the in-plane shear stress 7, = 0, and a coupled thickness-twist-
torsional mode in which the in-plane shear and either or both of the transverse shear stresses
are nonzero. In each of the solutions given in Table 1, such modes are identified.

It needs to be mentioned here that the solutions for simply supported (SSSS) parallelepipeds
given in Table 1 are actually included in the work of Srinivas et al. (1970a); these are included
here for completeness.

Table 1. Frequency equations for pure shear modes of
free vibration of rectangular parallelepipeds
simply supported on two opposite sides and free on lateral surfaces

Plate  Modal displacement functions Range of indices Mode, frequency (92)
SSSS u =mAcosmw X sinnwY sinkrZ
v = nAAsinmr X cosnwY sinknZ min=1.2.:: Twist

w=—kaAsinmrXsinnrY coskrZ k= :‘a\/("’—‘)2 + (%)? 77\/2(1'%2 + n?)?)
u = nAAcosmr X sinnwY cos knZ

v = —mAsinmnr X cosnrY coskrZ _ Twist and torsion
w=0 m,n,k=0,1,2,... w/m?+n2)2+ k?a?
SCSC, u = AsinnrnY cosknZ m=0;n=1,2,... Twist and torsion
SSSC  ww=0, w=10 k=0,1,2, 7TVniA? + k2a?
SSSF, u = Asin(2t)rY coskrZ m=0 Twist and torsion
SCSF v=0,w=0 nk=0,1,2,... m\/(251)2)2 4 k2a?
SSSF, u =mAcosmrXsinnrY m = nA Twist
SFSF v = —nAsinmrXcosnrY, w=0 mn=1,2, V2rm
SFSF u=mAcosmrXsinkrZ m = ka Torsion
v=0,w=—kasinmrX coskrZ m.k=1,2::. V2rm
u= AcosnrY coskrnZ m=20 Twist and torsion
v=0,w=0 k=012 Tvn2A? + k?a?
REFERENCE
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VIBRATION BEHAVIORS OF DEFECTIVE SYSTEMS

Su Huan Chen and Zhong Dong Wang
Department of Mechanics, Jilin University of Technology
Changchun 130025, People’s Republic of China

Introduction

The vibration behaviors of linear systems have been well understood and it is assumed that the system
has a set of complete eigenvectors to span eigenspace, i.e. the system is nondefective. However, in actual
problems, such as general damping systems, flutter analysis of aeroelasticity, rotor system with damping
connectors, and so on, the system, called defective system, do not have a set of complete eigenvectors to
span the space, do exist and can not be ignored. In this paper, we will start with the vibration behaviors of
systems with repeated and close frequencies, and then give those of the defective and near defective sys-

tems.

Vibration Behaviors of System with Repeated
and Close Frequencies'!’

In engineering, many complex large scale structures, such as an airplane, rocket systems, space station,
high tower, bridge and ocean platform, may often have repeated or cluster frequencies. To understand the
behaviors of modes of repeated frequencies plays an important role in dynamic design of such structures. In
this case, two important characteristics of modes of repeated frequencies may arise: first, if the small
changes are made on the system, the multiple frequencies, w, ~ . , may be separated into m distinct fre-
quencies, @, ~ @, ; second, the modal vectors corresponding to the multiple frequencies may have a jump,
that is a large change,

Au; = u; — uy, i=1,2,,m (1
may not be small. We illustrate these behaviors by means of the following example.
Let us consider a two degrees of freedom system and the vibration eigenproblem is

I:Kl + %(K; <+ K;)]Il o ‘/4_?(!(; = K;)Ig + ‘”!m-tl =0
g(x, — KDz, + S (K, + Kz, + w'mz, = 0 2
IfK, = K; = K, = K, the eigenvalues 4, = w}, 4, = &}, are identical, that is
_, _3K _ [1 0]
h=dh=3, U= 3 (3)

where U, is the modal matrix.
If K, = K, = Kand K, = K + 0K, the eigenvalues and modal vectors of the perturbed system, are



3k + 20K k
A 2m : = §3ﬁ
% 1 v 3
2 2
U= (4)
¥y3 _ 1
2 2

As can be seen from this example, although the eigenvalue 4, has only small change caused by the
small change of the system, the eigenvectors have a jump. The reason arising the jump of eigenvectors is
that the eigenvectors corresponding to the repeated eigenvalues u, (i = 1,2) are not unique and the combi-
nation of u, is also the eigenvector corresponding to the multiple eigenvalue A, , that is

uu = Upa (5)
How do we find the expansion coeficients @ ? If small changes are made on the structure with repeated fre-
quencies, such as the example given by equation (2), the structure may have close frequencies or cluster.
In the view of mathematics, the close frequencies are distinct, howerever, the behaviors of vibration modes
of close frequencies are similar to those of the repeated frequencies. Although the individual mode of close
frequencies is ill—condition, the eigen—subspace corresponding to close frequencies is still well condition,
that is if the system has small change, the eigenvectors may have large change, and the eigensubspace has
only small change. Because of the ill—condition of modes of close frequencies, the dynamic design, modal
identifications, and active control are very difficult to implement for such system. Recently, many research
work focused on the dynamic design, modal identification, and active vibration control of structures with

close frequencies.

Vibration Behaviors of Defection
and Near Defective Systems!?~*

In the above discussion for the behaviors of modes of repeated or cluster frequencies, we have assumed
that the system has a set of complete eigenvectors to span the eigenspace, i.e. the system is nondefective.
However, in actural problems, such as general damping systems, flutter analysis of aeroelasticity, rotor
system with damping connectors, and so on, the system, called defective system, do not have a set of
complete eigenvectors to span eigenspace.

Assume the matrix of system considered is A , the eigenvalue A has m multiplicity, the number of the
linear independent eigenvectors is Gm . If Gm = m , the system, A , is nondefective; if Gm <m , the sys-
tem is defective. In this case, the defective matrix A can not be transformed into diagonal by modal ma-

trix. The vibration equation for defective system is as follows:

AU =UJ (6)
AWV =VJH &P
vt =1 (8

where U = [u,, uzy **y u.]y V = [v), vss *+, v.] are the generalzed modal matrix, V" is the conjugate
transpose of V , and J is the Jordan form of matrix A. Equation (6) can be written in the following form



(A — ADu, = (9)

(A — ADu, = y, (10)

(A— ADu, = u,_, (1D

As an illustrative example, we consider flutter problem of airfoil. The airfoil is replaced by a rigid

rectangular panel with two degrees of freedom: a vertical displacement Z and a rotation 6. It is assumed

that aerodynamic lift force pf is proportional to the angle of attack 6 and to the square of the velocity v of

flight. The differential equations of motion are
meZ — moad + C,Z — pf = 0

— moaoZ + m (it + a})f + C,60 = 0 (a2

where m, is the mass of the panel of unit length, C, and C; are stiffness, pis a load parameter propertional

to the square of velocity v , i, is the radius of gyration. If the velocity v of flight was taken a critical value,
the system becomes defective and the flutter occurs.

It should be noted that the defective eigenvalue and eigenvectors are very sensitive with respect to the

changes of the system parameters. The small changes of the system parameter may cause the large changes

of the defective eigenvectors. For example, given a system with matrix 4,

1 1+c¢€
A = (13)
0 0.9999
A, has two linear independent eigenvectors
1 1
uf’ = [ 0] 4 = |0, 00001 (14)
1+ ¢

where €is a small parameter. If e— 0, A, = A, and u{"’ —u{"’ , that is the system is defective or near defec-

tive,

Because of the complecity of the behaviors of the defective modes, the dynamic design, modal identifi-
cations, and active control are more difficult than those of systems of repeated or cluster frequencies, and
more research work focused on this field.
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FREE VIBRATIONAL ANALYSIS USING THE RITZ METHOD WITH
"ARTIFICIAL" SPRINGS

S.M. Dickinson

Department of Mechanical and Materials Engineering
The University of Western Ontario
London, Ontario, Canada, N6A 5B9

When studying the free vibration of a system, the choice of the method of analysis to
be used depends upon a number of things, including the expertise of the investigator, the
equipment and software available, the complexity of the system and the accuracy desired. If
the geometry of the system is complex or it comprises several components, then the finite
element method is often the preferred means of analysis. However, the relative complexity of
the formulation, the computer programming required (if a base or commercial package is not
available) and the accuracy obtained by its use often renders it less attractive than more
classical analytical approaches for systems to which the latter apply. The Ritz method is one
such approach and is well recognized as an efficient and accurate method of analysis for the
treatment of systems of relatively simple geometry and having few if any discontinuities. There
are various ways in which the classical Ritz method can be rendered more versatile than in its
standard form and these include the domain decomposition method, the hierarchical (and
standard) finite element method and the use of an "artificial” spring approach. It is this last
approach with which this paper is concerned.

In his address to the American Mathematical Society, Courant [1]included a discussion
of the use of the Ritz method for solving problems with rigid boundaries by treating them as
limiting cases of free boundary problems, for which the choice of the coordinate functions can
be simpler. The technique was essentially to introduce appropriate artificial springs at the
otherwise free boundaries and to permit their stiffnesses to become sufficiently high that the
required rigid supports were approximated. The technique has since been employed by
numerous researchers for the solution of rigid boundary problems, as in the work of Kao [2]
and Mizusawa [3], or for the limiting cases for spring supported systems, as in the work of
Warburton and Edney [4], Cortinez and Laura [5] and Kim ez al. [6]. A similar technique may
be used to solve problems of systems comprising two or more components, as follows:

(@ The system under consideration is decomposed into its individual components, the
boundaries of each being treated as free.

(b)  The displacement for each component is written in terms of coordinate functions chosen
to satisfy the geometrical free boundary conditions.

(c) The system is assumed to vibrate freely in simple harmonic motion and the maximum
strain and kinetic energies for each component are evaluated in terms of the coordinate
functions.

(d)  Appropriate "artificial" springs are introduced at the boundaries of the system and at the
connections between adjacent components and the maximum strain energy in each spring
evaluated, again in terms of the coordinate functions.

(e) The maximum strain and kinetic energies are summed over the entire system and the
Ritz minimization procedure carried out to give an eigenvalue problem for a flexibly jointed
and supported system.

10



® Should the actual system have any flexible joints between components or at the
boundaries, then the appropriate "artificial" springs are given the actual stiffenesses. In order
to approximate rigid connections at the boundaries or between components, the stiffnesses of
the connecting springs are assigned very high values relative to those of the individual
components. The eigenvalue problem is then for the actual system under consideration.

The approach described, which may be construed as a physical interpretation of the
penalty function method, has been used by the author and his co-workers to study the free
vibration of a number of systems. These include stepped straight and curved, slender beams
[7], rectangular plate systems [8], circularly cylindrical shell and plate systems [9] (also treated
by Cheng and Nicolas [10] using the same technique), sectorial, annular and circular plates
[11,12] (including radial and circumferential slits approximating cracks), plates and shallow
shells with curved boundaries [13,14]and shallow rectangular planform shells with slits [15].
Some of these applications will be discussed, illustrating the versatility of the approach, its
characteristics and the accuracy of the results achievable. It should be mentioned that, by the
introduction of "artificial" springs to approximate rigid connections, the very useful upper bound
characteristic of the Ritz approach may appear to be lost. However, it is found that the spring
stiffnesses can be permitted to besufficiently high that the upper bound characteristic is
essentially preserved, without computational difficulty.
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Abstract

Solutions for the vibrations of continuous systems composed of prismatic members
are widely known. For non-uniform members these are not available, and the common

practice is to fall back to approximate numerical techniques for their solotion. The types
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of vibrational analysis of non-uniform members that will be covered in this presentation

are divided into several classes:

e Second oreder equations including axial vibrations of variable cross section mem-

bers [2] and torsional vibrations of variable cross section rods.

e Fourth order equations including Euler beam vibrations, torsional vibrations in-
cluding the effects of warping, composite beams [6,7,8], and beams on elastic foun-

dations [4].

e Coupled equations of motion such as Timoshenko beams [5], coupled flexural tor-

sional vibrations, and Vlasov beams including shear deformations.

For all the above cases the author’s exact element method [1,3] for static analysis
was expanded to include the inertia terms and the dynamic stiffness matrix was found.

Examples will be given for all the above mentioned applications.
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FREE VIBRATION OF FLEXIBLE MEMBERS

Demeter G. Fertis
Department of Civil Engineering, University of Akron

ABSTRACT

The research work here deals with the free vibration analysis of flexible prismatic and
nonprismatic members. During vibration, the beam carries its own weight, as well as
other weights that are attached to the member and participate in its vibrational
motion. The variation of the mass can be of any arbitrary nature, and its moment of
inertia, or stiffness EJ, where [ is the cross-sectional moment of inertia and E is the
Young’s modulus, may also vary in an arbitrary manner. Since vibrations of flexible
members are taking place with respect to a large static configuration position, it
becomes important to locate this position as accurately as possible. The method of
the equivalent systems as developed by Fertis and co-workers can be used for this
purpose. Therefore, the free vibration analysis here is done in two steps. The first
step involves the solution of the Euler-Bernouli nonlinear differential equation, in
conjunction with the method of the equivalent systems, in order to establish the static
equilibrium configuration and position. From this position, the small vibrations of the
member can be determined by using appropriate differential equation that
incorporate the effect of the large static deformation. The results are compared by
using more than one method to calculate the frequencies. The methodology used
here is based on two important transformations. The first one is the replacement of
the initial nonlinear system by a mathematically equivalent linear system of identical
behavior. The second important transformation is that the equivalent linear system
is a straight member that replaces the initial member in its large deflected
configuration. In other worlds, we replace a curved nonlinear member by an
equivalent linear straight member. Such transformations should create some
interesting discussion at the Symposium. These theories may be extended to apply
to large vibrational amplitudes and to flexible members that respond inelastically.
Several aspects and applications of the general methodology will be discussed, by
including mode shape diagnostics of complicated linear and nonlinear systems, if time
permits.
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FREE VIBRATION ANALYSIS OF RECTANGULAR
PLATES WITH ARBITRARILY DISTRIBUTED NON-UNIFORM
CLASSICAL EDGE SUPPORTS

By

D.J. Gorman
Department of Mechanical Engineering
University of Ottawa

INTRODUCTION

The problem of obtaining free vibration frequencies and mode shapes for thin rectan gular plates
with uniform classical edge conditions is one that has been fully resolved for a number of years. The
situation pertaining to plates with arbitrary discontinuities in these classical, clamped, simply supported,
free, boundary conditions is quite different. Even resolution of the problem of a cantilevered plate with
clamping part way along the fixed edge presents the analyst with a formidable challenge [1].
Nevertheless, there is a need to obtain continuum mechanics solutions for this general set of problems
and the solution proceedure must be one that is amenable to exploitation by the design engineer.
Examples of plates with discontinuities in edge support are often encountered, for example, in the design
of electronic circuit boards.

In this paper it is shown how use of the superposition method, and the availability of an
extremely limited number of harmonic forced vibration solutions, permits the establishment of
Eigenvalues and mode shapes for this most general family of problems. It is shown that almost
arbitrarily selected accuracy can be obtained, and certainly, accuracy meeting virtually all realistic design
needs.

MATHEMATICAL PROCEEDURE

The superposition method for plate free vibration analysis has been adequately described in many
articles in the literature (see for example ref. [2]). It is sufficient to state that all problems of the type
under discussion here can be resolved by means of the six building blocks (forced vibration solutions)
shown schematically in Figure 1.

Each of the first four building blocks is driven along one edge by a distributed harmonic bending
moment. The fifth building block is driven by a concentrated harmonic force located on the plate lateral
surface. All non-driven plate edges are free of vertical edge reaction and have zero slope measured
normal to the edge. Driven edges are also free of vertical edge reaction.

The spacial distribution of the driving moment of the first building block is expressed in series
form as,

Mb2 @&
= E cos (m-1)%wE 1
=5 m);h2 ., cos ( 1)
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Figure 1. Schematic representation of building blocks utilized in analysis
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It is well known that the response of this building block can be written as [2],

K
W(E.n)= Y Y (1) cos (m-1) nE 2)
m=1,2
where, for A> < ( m 7 )?
Ym(n) =Em{B“mCOSh ﬁmn + elchos Ymn} 3
and, for A>> (m 1 )?
Ym (Tl) - Em{BZEmCOSh an * 623m005h Ym Tl} 4)

€ and 1, are the dimensionless co-ordinates of figure 1, A% is the Eigenvalue and equals w a? vp/D,
where w is the circular frequency, “a” is the plate edge length along the £ axis, p = mass of plate per unit
area, and D equals the plate rigidity. All other symbols are defined in Ref. [2].

Solutions for the second, third, and fourth building blocks are readily extracted from that of the
first.

The fifth building block is split into two segments and the difference in shear forces across the
common boundary is constrained so as to equal shear load associated with the concentrated force P".
This force is expanded along the common boundary in series form using the DIRAC function. Upon
enforcing obvious continuity conditions a solution is obtained for the segments of the fifth building
block, which is identical in from to that of the first [2]. The sixth building block differs from the fifth
only in that it is split in a different direction.
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APPLICATION OF THE SUPERPOSITION METHOD

Consider, for illustrative purposes that we wish to utilize the present method to analyze the free
vibration behavior of a conventional cantilever plate. In addition to the first four buildin g blocks above,
we superimpose a set of building blocks with concentrated driving forces. A single row of equally
spaced forces is distributed along the clamped edge. A second row is then located parallel to the first,
but separated from it by 1% of the distance across the plate measured from the clamped edge. Utilizing
the above building blocks a solution is obtained for associated Eigenvalues, subject to the condition that
there is zero net moment along all plate edges and zero net lateral displacement at all driving force
locations. Standard solution techniques are employed [2]. It is found, for example, that Eigenvalues
obtained in this way are within about 1 to 1.5% of the known Eigenvalues for cantilever plates.
Convergence is found to be rapid, with about 14 terms utilized in the series.

It will now be obvious that by a judicious distribution of single, or double, interrupted rows of
point forces the plate can easily be subjected to clamped, simple, or free edge support at any desired
regions along the edges. In the full paper the results of comparisons between experimentally measured
frequencies and frequencies obtained by this fairly simple theoretical approach are compared. Other
questions have had to be addressed. For example, plate response to concentrated forces acting along
the edges can be obtained without utilizing the split-plate solution described above. Which approach
is best? Also, should building blocks be utilized wherein the plate split-line runs parallel, or normal, to
the point-supported edges. All these questions are explored and recommendations made based on the
authors experience.

It has been demonstrated in earlier publications that continuous line support along the plate
surface can be closely simulated with a row of point supports [3]. It is found here that simple or clamped
support along the plate edges can be closely simulated with a single or closely spaced double row of
support points, respectively. It is relatively easy to arrive at a reasonable density for point supports, and
spacing between point support rows at the boundaries, as the Eigenvalues are well known for all possible
combinations of uniform classical edge conditions.

SUMMARY & CONCLUSION

It is demonstrated that the method described constitutes a fairly simple yet quite accurate means
for obtaining natural frequencies and mode shapes of plates with arbitrarily distributed classical edge
support. Recommendations are made for support point density, separation of support point rows, and
the form of split plate solution to be selected. Fortunately, justification for these recommendations is
readily demonstrated. The method should prove useful for designers working with such plates.
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Vibrating Beams Contacting Through a Visco-Elastic
Layer: A Mechanical Model for Ultrasonic Motors

Peter Hagedorn

Department of Applied Mechanics
Darmstadt University of Technology
Germany

In this presentation we discuss the nonlinear contact problem between the stator and
the rotor of a piezo-electric ultrasonic motor. In a simplified mathematical model this
leads to the study of mechanical vibrations of two beams in intermitent contact, with a
visco-elastic layer on the surface of one of the beams. The regions of contact between the
two beams as well as the contact pressure and the frictional forces are calculated using
Fourier Series and assuming COULOMB friction.

Ultrasonic traveling wave motors are a new type of small drives ([1],[2],(3],[4],[5]). Consid-
erable effort has been spent during the last years in the design and optimization of these
motors. High frequency mechanical vibrations are generated in the stator by piezoce-
ramic elements polarized in a suitable way and to which an appropriate alternate voltage
is applied. Traveling bending waves are generated in the stator in this manner. The rotor
is then pressed against the stator by means of a disk spring, often with the stator coated
with a visco-elastic friction layer. Due to the kinematics of the stator vibrations, the rotor
turns in a direction opposite to that of the traveling wave in the stator (see 6] for details).
Ultrasonic traveling wave motors typically produce high torques at low rotational speeds.

In the bending vibrations of the stator and of the rotor, contact between the two parts
occurs in small contact regions only. A realistic mathematical model of the contact be-
tween the stator and the rotor is necessary for a reliable analysis of the motor, which is
needed for the optimization of its performance.

For a simplified treatment, here the ultrasonic traveling wave motor is substituted by a
linear motor. The stator is modeled as an elastically supported BERNOULLI-EULER beam,
whose motion in the axial direction is restricted. The slider is also elastically supported
and pressed against the stator, which is coated with a viscoelastic friction layer.

In previous studies the slider was assumed as rigid, which may be a reasonable assumption
for certain cases ([1],[7]). However, a more realistic model has to include the elasticity of
both the stator and the slider. This becomes particularly important for thin sliders (or
rotors) and a high prestress between slider and stator. Therfore, in this paper the slider
is modeled as an azially moving BERNOULLI-EULER beam.
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It turns out, that the contact problem formulated for the linear motor and analyzed in
this paper contains many of the essential features of the rotating motor. It therefore
represents a useful model for parameter studies and optimization of ultrasonic travelling
wave motors.
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IN-PLANE VIBRATIONS OF ARCHES WITH VARYING CURVATURE AND

CROSS-SECTION
C. S. Huang National Center for Research on Earthquake Engineering, Taiwan.
Y. P. Tseng Department of Civil Engineering, Tamkang University, Taiwan.
K. Y. Nieh Department of Civil Engineering, Tamkang University, Taiwan.

Curved beams play an important role in various structural applications such as arch bridges,
roof structures, piping systems, and aerospace structures. Because of their great importance, a vast
literature has been published on the dynamic analysis of planar arches( see the review articles [1],
[2], [3], and [4]). In this presentation, an accurate solution for analyzing in-plane vibrations of
arches having variable curvature and cross-section is proposed. The effects of shear deformation and
rotary inertia are taken into account. The solution for free vibration, which, basically, is a analytical
solution, is obtained by using the dynamic stiffness method, in which the local dynamic stiffness
matrix is established from a general series solution in terms of polynomials. The series solution is
formulated by modifying the solution given by Suzuki and Takahash [5], which was established by
applying the well-know method of Frobenius. The Laplace transform is applied to time variable and
incorporates the dynamic stiffness method to find the transient responses of arches. The solution
provides accurate responses of displacement components as well as stress resultants.

The solution for free vibration is verified by a convergence study for a fixed-fixed semi-elliptic
arch and a comparison with the results provided by Suzuki et al. [6]. Then, the solution is applied to
solve for the natural frequencies of parabolic arches with a complicated variation of cross-section
defined by (see Fig. 1)

I
I(x)= F—y o
[1- (=7 = coss,

where /. is the second moment of the area of cross-section at the middle point of arch, /; is a half
of the span length , ¢, is the angle between the tangent of the centroidal axis and a horizontal axis.
The value of the parameter 7 * is between 0 and 1. This type of parabolic arch has been frequently
designed in civil engineering.

To show the validity of the solution for forced vibration, a parabolic arch with the variation of
cross-section defined by eq.(1) subjected to a sinusoidal loading with finite duration at the middle
point of arch is analyzed. In the analysis, the effect of damping is also considered. The frequency of
the sinusoidal loading is chosen to be very close to one of the natural frequencies of the arch under
consideration so that one can see the process of resonance.

Finally, the free vibration of a multiple-span highway arch bridge is analyzed to demonstrate
the versatility of the dynamic stiffness matrix developed above in practical engineering,. The deck of
the bridge is modeled by straight beam elements. Hence, the analysis is accomplished by using the
dynamic stiffness matrices for arches and straight beams. In the analysis, the effects of the shapes of
arches on the frequencies are shown. '
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Vibrations of Thick Free Circular Plates Revisited

James R. Hutchinson
Civil and Environmental Engineering Department
University of California, Davis CA 95616

Introduction

This paper is intended to clarify some of the points made in Ref. 1. In that paper a series solution was
used as a basis of comparison for Mindlin plate theory and a modification of a solution method
proposed by Pickett. At the time Ref. 1 was written the number of terms used in the series was
severely limited by the available computer. Newer computers allow use of many more terms in the
series and hence much greater accuracy. The improved accuracy is used to clarify the previous results.

Series Solution

The series solution, which is described in detail in Ref. 2, combines terms which identically satisfy the
differential equations of three dimensional linear elasticity. The solution forms are grouped in three
series. Two of the series are summations of terms in the axial direction and the third is the sum of
terms in the radial direction. Boundary conditions on the shear stress 7,; at the top, bottom and edge of
the plate and on 7g, at the top and bottom of the plate are satisfied identically. The boundary conditions
on the stress oy at the edge, o at the top and bottom, and 7,¢ at the edge are satisfied by orthogonality.
This process leads to a system of homogeneous simultaneous equations whose coefficients are
transcendental functions of the natural frequency. Zeros of the determinant of this set of equations
give the natural frequencies. The order of the matrix is the number of terms in the radial direction
(NR) plus twice the number of terms in the axial direction (NZ). Parameters in the problem are the
thickness to diameter ratio k, the circumferential wave number 7, and Poisson's ratio v. The effects of
varying Poisson's ratio were adequately covered in Ref. 1 so v is taken as 0.3 in this paper.

Modified Pickett Method

The modified Pickett method (see Ref. 1) also involves combining terms which identically satisfy the
differential equations of three dimensional linear elasticity. The boundary conditions at the top and
bottom of the plate are satisfied identically and the boundary conditions at the edges are approximated
by setting the resultants M, , M,g and Q; to zero.

Mindlin Plate Theory
The Mindlin plate theory assumes that normals remain straight but not normal to the mid surface. This
formulation leads to an undetermined shear coefficient K. In Ref. 1 it was shown that by matching the
exact infinite plate solution for straight-crested flexural waves of long wave length with the Mindlin
plate solution a shear coefficient of 5/(6-v) resulted. To determine if that shear coefficient had meaning
for circular plates, plots were made of the shear coefficient which would make the series solution and
the modified Pickett solution match as a function of the thickness to diameter ratio (k). A typical plot
from Ref. 1 is shown in Fig. 1. To produce this
figure the series solution was limited to 20 terms 0.9
in each of the three series. This provided
sufficient accuracy for the comparison with the
Mindlin solution for large h but for smaller h the
accuracy wasn't sufficient. In Ref. 1 it was
stated, "The reason for the for the exact solution
being cut off for small 4 is two fold: first ... as the
plate becomes thinner more terms are needed for
equivalent accuracy; and second as the plate 0.7 :
becomes thinner, greater accuracy in the 9 0.2 mckn‘:;: - Dia:géfcr ijOU-“ 1
frequency is necessary to compute a correct shear
coefficient." In this paper the two causes for loss Fig. 1 Shear coefficient vs. thickness to
of accuracy is investigated. diameter ratio for n = 0. Series (—)
modified Pickett (---)

0.8

Shear Coefficient
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Increased Series Size

Increasing the number of terms in each of the series will greatly improve the accuracy of the solution.
In Ref. 2 it was shown how the order of the matrix could be reduced to just the number of terms in the
radial direction. It was also shown in Ref. 2 that the optimum convergence took place when the ratio
of NZ to NR equaled the thickness to diameter ratio A. This work, however, involves small 4 so NZ
should be smaller than NR. Therefore, the order of the matrix was reduced, in a similar manner to Ref.
2, to twice the number of terms in the axial direction . The computer program for finding the
frequencies was rewritten to make use of this improvement.

Causes of Lack of Accuracy

The two causes for lack of accuracy for small 4 is investigated in this section. Table 1 was constructed
to investigate convergence and in particular to see the effect of & on the convergence. The
nondimensional frequencies in this table are the frequency times the outer radius divided by the shear
velocity.

Table 1. Convergence of frequencies for increasing number of terms. NZ and NR refer to
the number of terms in the axial and radial directions respectively. Mindlin and modified
Pickett solutions are shown for comparison. The Mindlin solution uses K = 5/(6-v).

h = 0.05 h = 0.10 h =0.15

NZ NR Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2
4 20 10.498669]|1.831930)0.851241 | 3.075969 | 1.185550|/3.901710
20 | 100 |1 0.436154 | 1.766014 | 0.832208 | 3.059589|1.176493 | 3.894039
40 | 200 | 0.433726|1.763785|0.831604 | 3.059075|1.176209 | 3.893798
60 | 400 |10.433116[1.763228|0.831458 | 3.058951 |1.176144 |3.893743
120 | 60 |0.433001|1.763124|0.831426|3.058924|1.176125(3.893727
160 | 800 | 0.432962|1.763088|0.831416 | 3.058915|1.176120|3.893723
200 |1000|0.432943|1.763071|0.831412|3.058912|1.176118 | 3.893721

Mindlin 0.432909 | 1.762946 | 0.831368 | 3.057512|1.175930| 3.889495

Pickett 0.432910|1.763044 | 0.831405| 3.058997 | 1.176134 | 3.894141

It can be seen that the convergence is slightly more rapid for the higher values of h, although the
difference in convergence is not very significant.

The sensitivity of the Mindlin solution was investigated by considering the percentage change in the
frequency due to a one percent change in the
shear coefficient. A plot of the frequency

0.5
sensitivity is shown in Fig. 2 for the n = 0 case.
This plot shows that the sensitivity for all modes ., &
approaches zero as h approaches zero. Which < ™
means that, for a thin plate, any shear coefficient =
will produce the appropriate frequency. Putting 5 0.3
numbers to the plot, at & = 0.05 the sensitivity in
the first mode is 0.007% and in the second 2 .,
mode is 0.04%. As a numerical example,inthe 3
table above the first mode 200x1000 term &
solution at A = 0.05 agrees with the Mindlin = 0.1
solution to four significant figures. The Mindlin
solution is based on K = 0.877 whereas 0.0 | ! | !

matching the frequency 0.432943 would require
a K = 0.886. For this reason in the plots of the
shear coefficients which match the series
solution, only values of A higher than 0.05 are
considered in this paper.

0 0.2 0.4 0.6 0.8 1
Thickness to Diameter Ratio

Fig. 2 Percent change in frequency for a
one percent change in shear coefficient vs.
thickness to diameter ratio.

25



Accurate Results

Plots of the shear coefficient which would be required in the Mindlin plate theory to make it match the
series solution are shown in Figs. 3, 4, 5 and 6. Also shown in the figure is the shear coefficient of
5/(6-v) i.e. 0.877 for comparison. To produce the numbers used for these plots from 2 =0.05to h =
0.10, 1000 terms were used in the radial direction. From 2=0.11to A =0.15, 750 terms were used
in the radial direction. From h = 0.16 to h = 0.20, 500 terms were used in the radial direction. In all
of these cases the number of terms in the axial direction was taken as NR x & rounded to the next
highest integer. From h = 0.21 to & = 1.00, 200 terms were used in each of the series.

It can be seen in Figs. 3-6 that for most cases the shear coefficient approaches 5/(6-v) as the thickness
to diameter ratio goes to zero. If one compares Fig. 3 with Fig. 1 it can be seen that for small 4 the
new solution follows the modified Pickett solution very closely. If one were to compare Figs. 4-6
with the figures in Ref. 1 the same would be seen to be true. It can be seen that as h approaches zero
most of the curves approach the shear coefficient 5/(6-v). The notable discrepancies are the
fundamental modes for the n = 2 and n = 3 cases. This same discrepancy takes place when the
modified Pickett method is employed as shown in Ref.1.
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On the Application of Rayleigh’s Principle and the Ritz Method - Some Points to Ponder

S. Ilanko
Department of Mechanical Engineering, University of Canterbury, New Zealand.

The purpose of this paper is to discuss two interesting issues related to the application of Rayleigh’s
principle and the Ritz method. These are: (a) the total potential energy of a statically axially loaded
Euler-Bernoulli beam; (b) on the use of asymptotically aproximate partially restrained models in the
analysis of constrained beams and plates to overcome some limitations on the choice of permissible
functions.

Total Potential Energy of an Axially Loaded Beam

The total potential energy of an axially loaded thin beam undergoing small amplitude flexural
vibration consists of three components: (1) the strain energy associated with the flexural stiffness of
the beam; (2) the potential energy associated with the straining of the supports (applicable for flexible
supports only); (3) the additional potential energy due to the static axial force in the beam. The first
two components are easily explained and readily found in text books. Although the additional
potential energy due to static axial force distribution has been widely used [1,2] its derivation is
available only for beams subject to longitudinally dynamically free [3] and fully restrained cases [4].
The typical text book derivations assume that the beam is free to move axially during vibration, and
the potential energy associated with the axial force is then found by calculating the work done by the
end loads which for a beam subject to a compressive force P results in the equation

N o T
Vp = LzP(v)dx (1)
Sine the end loads P move towards each other by I:-;-(v')zdx the work done by P gives the above

expression. For a statically axially loaded beam subject to an longitudinally restrained conditions
(such as in cases where the axial force results from temperature changes), the additional potential
energy comes from extra strain energy due to the stretching (or release of stretching) of the neutral
plane and is available in the literature. For partially longitudinally restrained beams, the additional
potential energy consists of the potential energy of the supports (or end loads) as well as the non-
flexural component of strain energy. This may be derived from first principles, in terms of the lateral
and longitudinal dynamic displacements (v, u respectively). For small displacements, the functions of
longitudinal displacement u that appear in the strain energy of the beam and the potential energy of
the end loads cancel each other, and the resulting expression is the same as equation (1). This should
be expected, since the Newtonian equation of motion for an axially loaded beam does not depend on
longitudinal conditions. The derivations also allow for the effect of body forces and the axial force
may vary along the beam. The result is not new, and indeed it has been used in the vibration analysis
gravity loaded beams and rotating beams. However, to the author’s knowledge, the only general
derivations in the literature are based on the equations of motion and variational principles. The
approach described here is simpler, and the required potential energy expression can be obtained with
little manipulation. From author’s experience, undergraduate students find these derivations easy to
follow.
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Rayleigh-Ritz Analysis of Beams Using Asymptotic Models

One of the requirements of the Rayleigh-Ritz procedure is that the displacement functions used must
not violate the geometric constraints. For some problems, for example a simply supported plate
subject to some point supports, this introduces the additional task of finding suitable permissible
functions. If the point support is flexible, sine functions are permissible and inclusion of additional
strain energy of equivalent springs would be the only extra work involved. By increasing the
“stiffness” of the equivalent springs until it asymptotically approaches a “rigid” support is one way of
obtaining an estimate of the natural frequencies of the actual system. However, this only gives an
upper bound to the approximate model, and may not be sufficiently accurate due to numerical
problems associated with the use of very high values for the stiffness.

Another possible way to approach the “rigid” support is to add a point mass and increase its
magnitude until it becomes sufficiently “massive” to restrain the motion of the system at the support
fully. Since the natural frequencies decrease with mass, the frequencies of this asymptotically
approximate model will approach the frequencies of the actual model from above. This then leads to
the question, whether true upperbounds of the natural frequencies of a constrained system can be
obtained using an asymptotically approximate model where supports are replaced with masses of very
large magnitude.
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Free Vibration of Skew Laminated Plates

Rakesh K. Kapania®*, Andrew E. Lcnrejc:yJr and P. Mohan?
Department of Aerospace and Ocean Engineering
Virginia Polytechnic Institute and State University
Blacksburg, VA 24061-0203

Abstract

Plate free vibrations have been extensively studied in the literature. These studies have
progressed from thin to thick isotropic plates, isotropic plates to thin laminated plates, and
finally to thick laminated plates. Most early studies involving quadrilateral plates focussed
on rectangular planforms. However, skew and trapezoidal plates find wide use, especially
in aircraft structures. Additionally, the growing use of structures fabricated from composite
materials has facilitated the development of methods for the analysis of these structures.

The number of papers which study the free vibration of quadrilateral plates is quite vo-
luminous, an in-depth review of theories and approaches is found in Lovejoy and Kapanial.
Early methods to analyze laminated plate focused on the Classical Laminate Theory (CLT),
which involves many simplifying assumptions, e.g., the neglect of transverse shear and normal
stress. Only a small portion of the studies presented in the literature since 1986 focuses on
skew and/or trapezoidal laminated plates.

Laminated, parallelogram plates have been studied by Iyengar and Umaretiya?, Ng and
Das® and Narita®. Reference 2 uses characteristic beam functions and/or trigonometric func-
tions in the Galerkin Method for the analysis of plates simply-supported on 2 edges and clamped
on the remaining edges. Clamped plates of sandwich construction were studied by Ng and
Das?, also using the Galerkin method. Using the power series in the Rayleigh-Ritz method,
cantilever plates were studied by Narita?. More recently, Hadid and Bashir® present results
for the clamped, skew, orthotropic plate calculated using the spline-integral method. Symmet-
rically laminated, clamped, skew plates have been studied by Hosokawa, Terada and Sakata®.
The Green function, expressed as a power series, is approximately integrated over small regions
of the plate. Frequencies and mode shape nodal patterns are presented for a number of stacking
sequences and skew angles. Liew and Lam” studied isosceles trapezoidal, anisotropic plates
with various boundary conditions using the Rayleigh-Ritz method utilizing two-dimensional
orthogonal polynomials. Kapania and Singhvi®® provide a method for the analysis of skew,
trapezoidal, thin, laminated plates through the use of Chebychev polynomials in the Rayleigh-
Ritz method. The method used is applicable to plates having arbitrarily supported edges,
however, only cantilever plates were extensively studied, with frequency results for a number
of stacking sequences and planforms being studied. In a subsequent study', these authors
studied the sensitivity of natural frequency of these plates to various shape variables.
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Kapania and Mohan!! presented free vibration analysis of laminated skew cantilever plates
using a flat shell element obtained by combining the Discrete Kirchhoff Theory (DKT) plate
bending element and a membrane element similar to the Allman element, but derived from
the Linear Strain Triangular (LST) element. Both lumped and consistent mass matrices were
employed. Since for the DKT element the transverse displacement is not explicitly defined
over the interior, the determination of the consistent mass matrix is not straight-forward.
Consistent mass matrix was obtained using the shape functions given by Specht!? for the
transverse displacement and the standard quadratic interpolation functions in area coordinates
for the in-plane displacement components. The flat shell element!! is currently being applied
to study the free vibration of laminated rhombic plates which have inclusion angle that is more
than 90°. For such angles, a singularity occurs at those corners!®. Results from this ongoing
study will be presented at the conference.

In laminated or single layer plates in which the transverse shear modulus is small com-
pared to the extensional modulus, as well as in thick plates, transverse shear has a pronounced
effect and cannot be neglected. The assumption of Kirchhoff, where transverse shear stiffness
is considered to be infinite, results in an over-estimation of the natural frequencies. Laminated,
isosceles, trapezoid, cantilever plates were analyzed by Krishnan and Deshpande!4 by means
of finite elements. Finite elements, based on the FSDT, are used by both Lakshminarayana,
Rajagopal, Ramamurthy, and Joshi'®, and Lee and Lee'® to study skew, laminated plates, but
results are presented only for thin plates. The authors have published papers!'17'!® regarding
the vibration of thick, skew, trapezoidal laminated plates having numerous supports. Cheby-
chev polynomials are implemented in the Rayleigh-Ritz method as applied to the First-Order
Shear Deformation Theory (FSDT). Natural frequencies and mode shapes are presented for nu-
merous stacking sequences and planforms for cantilever plates!*'” and point supported plates®.
Most recently, Wang!® has also used the FSDT and Rayleigh-Ritz method, however, B-splines
are the chosen functions. At present, the authors are comparing the performance of the Cheby-
chev based Ritz method to that of Wang’s B-spline based method. These comparisons will
also be presented at the conference.
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LARGE AMPLITUDE FREE VIBRATION OF COMPOSITE LAMINATED SHALLOW SHELLS

Yukinori KOBAYASHI, Gen YAMADA and Syogo KIMURA
Division of Mechanical Science, Hokkaido University, Sapporo, 060, Japan

INTRODUCTION

Since fiber reinforced plastic (FRP) has been used widely to improve the characteristics of structures
recently, many researchers have attacked nonlinear problems of laminated composite shells.’"” In this paper, the
Ritz method and Galerkin's procedure are used to solve the governing equations for the nonlinear vibration of
laminated composite shallow shells based upon the first order shear deformation theory (FSDT). The Ritz method
is used to determine the trial function for Galerkin's procedure, because it is difficult to find the suitable trial
function that satisfy the boundary conditions except the case of simply-supported shells. Eigenfunctions for the
linear free vibration are used to express the displacements, approximately, in the nonlinear analysis of the shell.
Applying Galerkin's procedure and eliminating variables except transverse displacement, the governing equations
are reduced to an elliptic ordinary differential equation in time. The period of vibration for the shell is calculated
by integrating the equation. The present method is applied to a clamped shallow shell which has a rectangular
planform.

ANALYSIS

Figure 1 shows a shallow shell which has a rectangular boundary and principal curvature radii R, and R,.
The thickness of the shell is 4 and lengths of edges are a and b. The displacement components are u, v and w in the
x,y and 2 directions, respectively. The principal directions of elasticity are denoted as 1- and 2-axes and the 3—
axis is coincident to the z-axis. The angle between 1- and x— axes is 6. Applying FSDT, the displacement field
of the shell may be expressed as

usu+z ¥, vV=v +z #y, WE=w,, (1)
where u,, v, and w, are the displacements at the midsurface, and ¢, and ¥, are the rotations of the midsurface about

the y and x axes, respectively. The classical lamination theory is used to obtain the elastic rigidities. Assuming
1+z/R;=1 (i=x, y), the equations of motion of the shell are derived as

Fig.1 Coordinate system of a shallow shell

32



oN., oN, QO = oN, oN, QO <
— Xy B EX_hhii s — 2 X4 V= phy 3
ox dy R, 2 ox dy R, %%
N, N, 80, a0 .
SRR o B WM N0, LW o )= o, @
3 3
M, My o PRy M, M, , _ph’y
ax ay x 12 x ay ar ¥ 12 y

where N, N,, N, are inplane force resultants, M, M,, M,, are moment resultants and Q, and Q, are shear force
resultants. The shear correction factor is introduced to obtain the shear force resultants and the value 5/6 is used
in this paper. In-plane and rotational inertia terms are neglected in the following analysis. Linear free vibration
of the shell is solved by the Ritz method prior to the nonlinear analysis, then eigenfunctions of the linear free
vibration are used to express the displacements, approximately, in the nonlinear analysis of the shell.
Displacements are expressed approximately as

I 7 K L M N
Up=Y La,U (O (MU, V=L LoV (EWV,(mV(1), W=Y Te. W, (O, (mW(),
im0 j=0 k=0 [=0 m=0 n=0
o o 3)
#oL La, P (OF(NED. 4L Le, P, (OF, (NF()

gr” yx
o=0 p=0 .

by using the trial functions
U,=¢'0-8Y, Ups=n(-n), V,=0-&), V,=1'1-9Y),
Wom=¢"(1-8%), W,=n"(1-n%), @)
P.280-8 ¥ =0"0-9%), ¥, =0-6, P _=9(1-9),
which satisfy the geometrical boundary conditions for the clamped shell. Following nondimensional parameters
are introduced to simplify the analysis: '

[ Ep3 ©)

* 12(1-v,v,)’

where 7 is nondimensional time, pis the mass density of the shell and E, is the Young's modulus in the direction
of 2-axis and v,, and v,, are Poisson's ratios.

The displacements for the nonlinear vibration are expressed approximately by using the linear eigenfunction
for the fundamental vibration mode. Applying Galerkin's procedure and eliminating variables except transverse
displacement, the governing equations are reduced to an elliptic ordinary differential equation in time.

d’w
dr’

ra Wea Wiea W3=0. (6)
The period of free vibration of the shell is calculated by integrating the equation (6) numerically.
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RESULTS AND DISCUSSION

Accuracy of results by the present method depends on the number of series (3), namely, convergence of
eigenfunctions for the linear free vibration. Table 1 shows convergence characteristics of fundamental
frequency and frequency ratios for three layered cross-ply and angle-ply shells made of graphite/epoxy with
square planform. Increasing the number of series MXN, linear natural frequencies 4 converge rapidly.
Frequency ratios, nonlinear frequency wy over linear one @, , are tabulated for nondimensional amplitudes
W=1 and 2. They change slightly, however, the values have enough converged if we use more than MxN=5x5
for the cross-ply shell and MxN=6x6 for the angle-ply shell.

Figure 2 shows the effect of amplitude upon frequency for the three layered shallow shells having various
fiber angles with square planform. The cross—ply shells and the angle—ply shell with #=15° exhibit a hard spring
behavior. The angle—ply laminated shells whose fiber angles are 30° and 45° exhibit a "soft spring" response for
small vibration amplitudes (i.e., the frequency decreases with increasing amplitude). As the amplitude increases
further, a hard spring behavior appears.

1.8 T . T

Table1l Convergence characteristics of

frequency parameters A = maz‘/ph!Dn 1.6k

and frequency ratios of the shells

(E\/E,;=15.4, G,,JE,=0.79, G,/E,=0.5, . 1.4F ]

v,=0.3, R,/a=R /b=15, h/a=0.02) 3 0" /90" m"
0°/90°/0° 30°/-30°/30° 3 13f Dl
MxN A w=1 w=2 A w=1 W=2 15"
3x3 1005 1.216 1.759 97.64 1.181 1.682 1.0 55 -
4x4 1003 1.211 1.760 92.59 1.030 1.406 45
5xs 1007 1217 1773 9161 0887 1.165 O o5 10 15 20
6x6 1007 1216 1773 9148 0920 1221 W
Fig.2 Frequency ratios for various fiber angles
7x7 1007 1215 1770 9144 0.924 1.230 (6/-0/6 , RJa=R Ja=15, h/a=0.02)
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VALIDITY OF THE MULTIPLE-SCALE SOLUTION
FOR A SUBHARMONIC RESONANCE RESPONSE OF
A BAR WITH A NONLINEAR BOUNDARY CONDITION

W. K. LEE, M. H. YEO AND S. S. BAE
Department of Mechanical Engineering, Yeungnam University,
Gyongsan 712-749, Korea

In order to analyze nonlinear vibrations of structural elements, many have used the method
of multiple scales, which has been known to give a uniformly valid approximation as long as a
specific system parameter is small. However, we cannot rely fully on the approximation, because
there is no criterion on how small the parameter should be. Thus checking numerically and/or
experimentally the validity of the approximation is essential, especially when the approximation
disagrees with our intuition.

For instances, according to Nayfeh and Asfar[l], Hadian and Nayfeh[2], and Lee and Kim[3],
secondary resonance responses can always be excited for all large value of the frequency
detuning parameter, but 'physically this is not the case’ as stated by Nayfeh and Asfar[l1]. The
reason for the statement is as follows. The increase in the parameter causes the excitation
frequency to meet another natural frequency, and then system is governed by a primary
resonance corresponding to the natural frequency rather than the secondary resonance. The
analysis of the primary resonance starts with a different assumption on the magnitude of the
excitation amplitude from the case of the secondary resonance. Thus we have to abandon the
approximation for the secondary resonance when the parameter escapes from some range of the
parameter, which the analysis doesn’t tell us. Eventually, we have to rely on the numerical
and/or experimental means to estimate the range.

Nonlinear Spring In this study, to check the validity of the
approximate responses for the secondary
resonance we examine the longitudinal
response of a bar with a nonlinear boundary
condition as shown in Fig. 1. One end of the
bar is clamped and the other end is
constrained by a nonlinear spring to a
harmonic excitation.

|—b2Fcos£?t
Fig. 1 A schematic diagram of a bar with a

nonlinear boundary condition.

The governing equation of motion of the structural system is given by
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u _ _d'u du
E‘}'—W'{'z&“(x) ot (1)
u=() at x=0, %;—‘-+au+£u3=2Foos.Qt at x=1 2, 3)

Using the method of multiple scales, Nayfeh and Asfar[l] obtained a uniform first-order

expansion of the solution for the third-order subharmonic resonance (2=3w,+ 0, where o= €0

is a detuning parameter and o= 0(1)) as follows.

w(x, ) = a,G(x,0,) cos (% o1 7) +2AG(x, Q) cos 2+ (&) (4)
where
_ _Ssinwx _ FsinQ
Glx, @)= sinw '’ A= Qcos 2+ asinQ G, 6)

The natural frequencies w,, poles of A, are given by the following characteristic equation.

wcos w+ asinw=( (7
The nth mode amplitude a, of the subharmonic response with the frequency Q/3 is given by
the steady state( a,’=0, 7' =0) of the system of autonomous ordinary differential equations

: ar’ .
@y == tya,— 4;:1 aisiny 8

»

a,y = oa,

or, 9r,A? or, e or
" 8w, " GJ”:l @n~— 4w: Gn z.“a_ 4m':l @ncos ©

where u, and I', are given by
1
tp="T"(sin’w,) ! L u(x)sin’wx dx (10)

I'y=4w,sin*w,(2w0,— sin2w,) " (11)

In order to check the validity of the solution given by the equation (4), we solve the
nonlinear problem (1)~(3) by using the finite difference method with Af#=(2x/2)/3000 and
Ax=0.01. In this study we consider the case of Q=3w,(#=1) and (&, g, @)={0.01, 0.1,

0.3}). The natural frequencies are { @, @,, w3, *--)={1.7414, 4.7751, 7.8920, ---).

Using equations (8) and (9) and stability criteria, we have plotted the amplitude-detuning
parameter response curves in Fig. 2, where solid and doted lines denote, respectively, stable and
unstable responses. There exist a stable zero-amplitude response and one pair of
nonzero-amplitude responses. The pair has the stable and unstable branches. Since the
zero-amplitude response is stable, the system has at most two stable responses. In this case, the
long-term response of the system depends on the initial condition. The symbols A and ©
obtained by the finite difference analysis denote, respectively, the zero-amplitude and
nonzero-amplitude responses. One of difficulties in obtaining numerical solutions of the boundary
and initial value problem is to choose proper initial conditions. Each of these initial conditions
implies 200 numbers (one velocity and one displacement at each of 100 points ( Ax=1/100)
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along the bar). In this study, for convenience,

16 we use the stable solutions (solid lines in the
"| figures) obtained analytically to choose proper
initial conditions.

The Fig. 2 shows three saddle-node
8 L F=0.2 bifurcation points, 04, 0c and 0p. Because
a &% 0.01 of the zero-amplitude response, jump
i a, = it phenomenon occurs at each of these
: bifurcation points. The figure shows that the
a= 0.3 amplitude of the stable nonzero-amplitude
o = 1.7414 response  increases with the detuning

0 |laaaa & A A i .
; : parameter ¢. However, we can easily expect
' ) ‘ } that this result is physically invalid. As ¢

0 1 2 .

o, 05 O, O'UD increases and the excitation frequency Q

increases up to w;(0=2.668), the effect of

Fig. 2 Variation of the amplitude of subharmonic the subharmonic resonance should disappear.

responses with the detuning meter d. The result from the finite difference analysis

——, Stable; +++4 unstable. Numerical
solutions: O, nonzero-amplitude resonance
solution; A, zero-amplitude resonance
solution. expected. Of course, the invalidness of the

shows that the approximate solution for the
nonzero-amplitude response is valid only for a
very limited region of o(04€0<0g) as

solution for large ¢ may not be so crucial
because it is well known that the effect of the resonance is meaningful in a limited region of .
However, this result is in a marked contrast to the cases of the primary resonancel4, 5] where
the first-order approximations expect very well that the nonzero-amplitude resonance reponses
exist for a limited region of a.
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SOME MISCONCEPTIONS IN MEMBRANE, PLATE,
AND SHELL VIBRATION ANALYSIS

by

Arthur W. Leissa
Ohio State University
Columbus, Ohio, USA

The classical equation of motion for a planar membrane stretched uniformly in all
directions is
TV2w+p=ph oV
w+p=p 52 (D

Where T is the uniform inplane tension and p is a distributed transverse pressure. If the
R.H.S. of (1) is zero one has a statically loaded membrane; if p = O the free vibration
problem is described; and if neither is zero, one has the dynamic response situation,
including forced vibration.

All is well for the above problems if T is sufficiently large, the displacement (w) is
sufficiently small (so that T does not change significantly), the membrane slope is small (a
required assumption to arrive at the linear form of (1)), and that p is distributed (i.e., not a
concentrated force). For the static problem it is well known that the harmonic functions
which are solutions of (1) become singular at a concentrated force. That is, the solution for
the static, concentrated force yields infinite deflection at the loading point. Even if one
were to generalize (1) to permit large slopes, the slope at the point load would still be
infinite.

This rather obvious result does not seem to enter the thinking of some people who
solve dynamic problems. For example, one sees published papers for free vibration
frequencies and mode shapes of membranes having point supports in the interior and/or at
the boundary. Others exist for the forced vibrations of membranes stbjected to
concentrated exciting forces. But neither type of problem is a proper one. Clearly,
whether an exciting force is static or dynamic does not change the character of the
membrane deflection (infinite) at the loading point. Similarly, if the concentrated force is
reactive (the point support), instead of active, the membrane cannot not supply any
resistance (or stiffness).

As a specific example, consider the free vibration of an annular membrane with
outer radius “a” and inner radius “b”. This problem has a well-known exact solution in
terms of Bessel functions. The table below summarizes fundamental values of the
nondimensional frequency ®a ,/ph/T as one varies b/a. The mode is an axisymmetric
one.

b/a 0.40 0.20 0.10 0.02 0.00

®a Jph/T 5.183 3.816 3314 2.884 2.405

For b/a = 0, the value of 2.405 is the same as that for a complete circular membrane of
radius “a.” That is, the point support does not increase the frequency. One achieves the
value in the table either by taking limiting values of the Bessel functions in the frequency
equation, or by numerically approaching b/a = 0 with the computer program.
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On the other hand the table also shows that if one supports the membrane
additionally along a very small interior circle of 1/50 the diameter of its outer diameter, the
frequency is significantly increased (20 percent) from that of the supposed “point support.”
In the published papers for point supported membranes no exact solution is achieved. The
approximate solutions result in distributing the pressure over a small, but finite, area,
causing natural frequency increases in a similar manner.

For nonplanar membranes (i.e., membrane shells) the problem is the same. The
curved membrane cannot support a point load, either. (This is one of the serious defects of
the membrane theory of shells.)

A similar problem arises for plates, but in a different manner. Classical thin plate
theory does give finite deflections under point loads (but infinite bending moments) for the
static problem. Therefore, point-loaded or point-supported plates are sensible dynamic
problems, as well. However, consider now a concentrated bending moment applied to
either an interior or exterior point. Timoshenko presented the static solution for an interior
concentrated moment (see Theory of Plates and Shells, Second Ed., 1959, p. 326,
equation (207)). But he never bothered to mention that the slope (dw/or) due to the point
moment at the loading point becomes infinite, even with t-= smallest moment M,).
Therefore, the classical plate has no resistance to concentrated bending moments, as the
classical membrane has no resistance to concentrated transverse forces. Thus, plates with
exciting point moments (interior or boundary), or point rotation constraints (e.g., “point
clamps”) are meaningless in vibration or other dynamic problems. The same can be said
for shells, even when the classical, eighth order, bending theory is used.

Another type of singularity has existed in plate and shell vibration problems since
classical plate theory was first formulated more than a century ago. This singularity exists
at sharp comners where edges intersect. A few examples are shown below:

D

cantilevered free simply supported
skew sectorial ~ parallelogram

The existence and strength of the moment singularities at a sharp comer depends upon the
types of intersecting edges and their included angle. Corners with singularities are marked
“S” in the sketches above. Until recently, these singularities have typically been ignored in
solving plate vibration problems. But they must be accounted for if one wants to obtain
accurate frequencies, especially the lowest (and most important) ones.
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In another direction let us consider the “beam functions” that are often used with the
Rayleigh and Ritz methods to determine approximate frequencies for quadrilateral plates or
shell panels. They were introduced by Ritz himself (1909) in his only paper that dealt with
plate vibrations — the completely free square plate. For this problem one uses the products
of “beam functions” (the eigenfunctions of vibrating beams) which are those for free-free
beams.

But, consider an edge x = constant. If it is free, in the limit, as sufficient products
of beam functions are taken, the following free edge boundary conditions must be
approached:

2 2 3 3
i-;+v-a——%=0, and 2%+(2-v) o wz
ax ay ox axay

(2)

arising from zero edge moment and Kelvin-Kirchhoff edge reactions, respectively. The
beam functions guarantee that 9°w/dx% =0 and 9°w/3x> =0 along the entire edge.

However, then the first of (2) implies that 3w/ ay2 =0 for all y, or the edge can have
no curvature in the y-direction. It therefore must remain straight, which is unrealistic. The
beam functions impose a similar undesirable constraint upon the higher derivative term

93w /ox ay2 in (2). With these constraints the Ritz method will converge, but to incorrect
upper bound frequencies.

Finally, a lot of people think that a single “Rayleigh-Ritz method” exists. There are
two methods. The one accredited to Raleigh (see his Theory of Sound, 1877) uses a single
assumed mode shape and calculates the corresponding frequency by equating maximum
potential energy to maximum kinetic energy in a cycle of free vibration. The Ritz method
utilizes a series of admissible functions, and determines the coefficients of the series by
minimizing the frequency so as to obtain the best possible upper bounds. To my
knowledge, Rayleigh (an Englishman) was unaware of this extension, and Ritz (a German)
did not mention Rayleigh. The methods are separate in origin, and altogether different in
application.
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Vibration of Deep Cylindrical Shells:
A Three-Dimensional Elasticity Approach

C. W. Lim and S. Kitipornchai
Department of Civil Engineering, The University of Queensland, Queensland 4072, Australia

K. M. Liew
School of Mechanical and Production Engineering, Nanyang Technological University, Singapore

Abstract- The three-dimensional elastic analy-
sis of vibration of deep cylindrical shells is treated
here. Transverse extensibility usually neglected
in plate and shell higher-order theories has been
considered. The natural frequencies and vibra-
tion mode shapes have been obtained via a three-
dimensional displacement-based extremum energy
principle. The excessive requirement of memory
and computation has been overcome without sac-
rifying numerical accuracy. The effects of sub-
tended angle and aspect ratio have been concluded
for shells with various boundary conditions.

1. Introduction

Vibration of thick plates and shells have been
conventionally solved by the first-order (Reiss-
ner, 1945) and higher-order theories (Reddy and
Liu, 1984). Solutions to vibration of thick shal-
low shells have been presented by Lim and Liew
(1995) and Liew and Lim (1996) for singly-curved
and doubly-curved shells with arbitrary bound-
ary conditions. Three-dimensional elastic solu-
tions are particularly scarce and almost all the in-
vestigations are concerned with rods and beams
(Hutchinson, 1981), parallelepiped (Hutchinson
and Zillmer, 1983; Leissa and Zhang, 1983) and
cylinders (Hutchinson, 1980; Liew et al., 1995b).

This paper investigates the free vibration of
thick, deep cylindrical shells using a three-
dimensional displacement-based extremum energy
principle.  The strain energy integral consid-
ers transverse extensibility neglected in first-order
and higher-order theories. The p-Ritz method is
employed and the three-dimensional displacement
field is characterized by a cylindrical coordinate
system with orthogonal displacement components.
The conventional numerical shortcoming of exces-
sive memory and computation have been overcome
by classifying the vibration modes into various
symmetry classes. The effects of subtended angle
and aspect ratio have been investigated for shells
with various boundary conditions.

2. Theory and Formulation

Consider an isotropic, deep and thick cylindri-
cal shell with length a, midsurface radius R, sub-
tended angle 6,, thickness ¢ as shown in Fig. 1. An
orthogonal cylindrical coordinate system (r,4, z)
is defined with r the radial coordinate, 6 the an-
gular coordinate and z-axis parallel to the axis
of cylindrical shell. The orthogonal displacement
components are u,, uy and u,.

r

Fig. 1. Geometry of a deep cylindrical shell.

For linear and elastic free vibration, the strain
energy of a three-dimensional solid is

v=3/[] [(A+2G) (& +ds+ &)
+2A (fncea + €go€z: + cuen)

+G (v, +2 +133)] rdrdfdz (1)

where V is volume, G is shear modulus and

vE E
A=Troa-2) ° G = S b

in which E is the Young’s modulus.
The normal and shear strain-displacement rela-
tions are

ou,

frr=F 3

10us u,
€5 = =+ —

r 00 T (3a,b)
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ou, oug 10u,

€z = az 3 Yoz = E ; 38 (3C, d)
_ Ou,  Ou,
Yor = B + ¥ 75 (3e)
1 au, Bug Uug
Y6: = T | (3f)
The kinetic energy is
au,- 3119 2 311.3 2
f[ at)*(m)ldv
(4)

where p is the mass density per unit volume.

For linear, small deformation vibration, the dis-
placement components u,, ug, U, assume temporal
simple harmonic functions with Uy, Ug, U, the dis-
placement amplitude functions and w the angular
frequency of vibration. The displacement ampli-
tude functions for midsurface and thickness defor-
mations of a vibrating thick cylindrical shell can
be expressed by a set of three-dimensional (3D) p-
Ritz functions. These functions are the products
of 2D p-Ritz functions ¢,(8,2), ¢e(0,2), ¢:(0,2)
for midsurface deformation and 1D p-Ritz func-
tions (), ¥e(r), ¥.(r) for thickness deforma-
tion. The displacement amplitude functions are

Y o 6i(6,2) $i(r)

Hile )= (50)
1=1j=1

Us(r,0,2) = 3°3° ¢ ¢i(6,2) %i(r)  (5b)
i=1 j=1

Usr,0,2) = 3°5° ¢ i(0,2) pi(r)  (5¢)

=1 j=1
in which ¢, ¢}/, ¢/ are unknown coefficients.

An energy functional is defined as

H = Umaz - Tmﬂ!.‘ (6)
According to the Ritz principle
oIl
— =0 ; a=r6andz 7
pY (7)

which leads to the governing eigenvalue equation
(K - A*M) {C} = {0} (8)

H )h:wb\/%

where

A
= — N
A 0 (9a,b)

are the dimensionless frequency parameters.

3. The 1D and 2D p-Ritz Functions

The midsurface and thickness displacements de-
noted by u,(r,8,2), ug(r,0,2) and u,(r,6,z) are
truncated finite series given in Egs. (5a-c). The
midsurface deformation admissible functions are
sets of geometrically-compliant 2D polynomials
¢.(0,2), ¢4(0,2) and ¢,(6,2) derived such that
the geometric boundary conditions are satisfied
at the outset. They are composed of the prod-
uct of a series simple two-dimensional polynomi-
als and boundary-compliant basic functions (Lim
and Liew, 1995; Liew and Lim, 1996). Similarly,
the 1D thickness admissible functions ¥,(r), ¥s(r)
and ¥.(r) are the products of sets of 1D polyno-
mials and appropriate basic functions.

Classification of vibration modes is possible by
grouping terms with odd and even powers in
or(0,2), #o(0, z) and ¢.(8, z) (Lim and Liew, 1995;
Liew and Lim, 1996). This tremendously reduces
the number of terms in each series and thus the
determinant size of the eigenvalue equation is con-
siderably smaller. Huge computational effort can
be saved as will be discussed in detail in the next
section.

4. Results and Discussion

The convergence characteristics of dimension-
less frequency parameter A has bee studied for
CFFF (cantilevered), CFCF and CCCC shells.
Satisfactory convergence of A has been reached for
admissible functions with pg, X p, = 10 x 4. All
the eigenvalues converge downwards as expected
because the Ritz method overestimates stiffness
and vibration frequency and underestimates dis-
placement.

Classification of modes has significant effect on
the efficiency of algorithm as the determinant size
of the eigenvalue problem can be greatly reduced
and tremendous numerical computation can been
saved while maintaining the same level of numer-
ical accuracy. Details of vibration mode classifi-
cation can be found in Lim and Liew (1995) and
Liew and Lim (1996).

A comparison of frequency parameters with fi-
nite element solutions (FEM) is presented in Ta-
ble 1. As observed, the p-Ritz solutions agree well
with the FEM solutions and agreement is particu-
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larly excellent with the solutions using HX8M ele-
ments. This is understood as the HX8M elements
are 3D elements which consider transverse extensi-
bility similar to the present analysis. It should be
emphasized here that it takes between 1.5 hours
to 4 hours to obtained a converged FEM solution
using LUSAS while it takes less than a minute to
obtain solutions as accurate using the present p-
Ritz approach with mode symmetry classification.

4. Conclusions

A new analysis using a three-dimensional elas-
ticity approach for free vibration of thick, deep
cylindrical shells has been developed. An energy
functional with spatial integrals for strain and ki-
netic energy components have been formulated.
The two-dimensional p-Ritz admissible functions
(Lim and Liew, 1995; Liew and Lim, 1996) have
been generalized to three-dimensional functions.

Convergence of vibration frequencies has been
examined while excellent comparison with finite
element solutions has been recorded. Classifica-
tion of vibration modes tremendously reduces the
matrix determinant size. Much computation ef-
fort can been saved while maintaining the same
level of accuracy.
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Ax_isymmetric vibration of circular plates by axisymmetric
finite element- A 3-D approach
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Plate theories are conventionally employed in vibration analysis of circular plates. However, plate
theories are two-dimensional approximation of 3-D elasticity. It is to be expected that such
approaches may not satisfactorily describe the real behavior. Therefore, an approach using
axisymmetric finite element to analyses the axisymmetric vibration of circular plate is proposed. The
advantage of the approach is twofold. First, it is based three-dimensional elasticity, no
approximations or assumptions are imposed, and behavior in the thickness direction of circular plates
can be explored. Secondly, boundary conditions can be imposed exactly.

Results of analyses by the present method are given in [1] wherein, five different boundary
conditions are considered and are shown here in Fig. 1. Among them there are four types of simply
supported conditions representing possible realistic constrained situations. Part of the results are
shown in table 1, from which we may find that constraining the bottom of the outer edge of circular
plates in both the radial and the transverse directions, i.e. ss-3, leads to significantly different
prediction of the frequency parameters compared to the other three simply-supported conditions of
the present study and of those based on plate theories. This is a simple support which is just as likely
to be encountered in practical situations as one at the midplane of the plate(e.g. ss-1), but, to the
knowledge of the author, has not yet been reported in literature. Another noteworthy aspect is the
appearance of some vibration modes that are different from the conventional flexural modes and are
named as “straining modes”. They are so called because, from their mode shapes, the tensile and
compressive behaviors of the circular plate itself in the radial and axial direction are more obvious
than the flexural motion of the plate. Fig. 2 shows the first 10 axisymmetric modes of a circular plate
with clamped boundary condition. Obviously, the 4*, 6™, 8" and 10" modes are the straining modes,
and such modes are impossible to be seen through plate-theory-based approaches. Some similar
types of vibration modes have been shown to appear in the 3-dimensional vibration analyses[2,3] of
cantilevered rectangular parallelepipeds, and rods and beams with uniform boundary conditions.
From the mode shapes of the present results, it is possible that straining modes may dominate the
dynamic stresses developed during vibration, e.g., the straining modes can enhance the possibility of
crack extension.

From the above observation, we may therefore come to the conclusion that, to have a complete
solution or to show all the facets of vibration of circular plates, 3-dimensional analyses should be
conducted, and the results of 1-D and 2-D theories should be used with caution.

Reference:
. C.F. Liuand G.T. Chen, A simple finite element analysis of axisymmetric vibration of annular

and circular plates, Int. J. Mech. Sci., vol. 37, no. 8, pp. 861-871, 1995
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Fig. 1 Boundary condition used.

afh 4 5 10 20 50
Mode | 4.733 4.802 4.901 4926 4.934 Present SS1
4,725 4.795 4.897 4.925 MARC SS1
4.733 4.802 4901 4,926 4934 Present SS2
6.874 7.082 7.409 7.526 7.582 Present SS3
6.874 7.082 7.409 7.526 MARC SS83
4.664 4.762 4.893 4925 4934 Present SS4
4.696 4.777 4.894 4.925 4935
4935
4935 by different plate theories
4935
Mode 2 24.042 25.599 28.452 29.383 29.665 Present SSI
24.042 25.599 28452 29.383 29.665 Present SS2
23.910 26414 30.878 32310 32.767 Present SS3
22.839 24.876 28322 29.362 29.663 Present SS4

23.254 24994 28.240 29.323 29.720

29.720 by different plate theories
29.727

Table 1. Non-dimensional frequencies @ for simply supported isotropic circular plates
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Fig. 2

The first 10 mode shapes with clamped boundary condition
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Modelling the aeroelastic behavior of wings, either responses to sudden changes in wind
velocity (gusts) or self-excited responses to high wind speeds (flutter), is rendered somewhat
challenging by the following set of circumstances: To solve for the flow around the wing and,
subsequently, the distributed aerodynamic loads acting on it, one must know the position and
velocity (state) of the wing and their histories in order to impose boundary conditions on the
flowfield. On the other hand, to solve for the state of the wing, one must know the current
aerodynamic loads as well as the history of motion leading up to the present state.

The traditional approach to breaking this apparent impasse is to assume certain character-
istics for the flowfield, such as simple harmonic motion in the case of flutter, and to solve the
problem in the frequency domain. Though such approaches are rather dependable for predict-
ing the onset of an instability, they are obviously limited; for example, they cannot predict
post—flutter behavior reliably.

The present approach is to consider the structure and the flowing air to be elements, or sub-
systems, of a single dynamic system and to integrate all the equations of motion simultaneously
and interactively. The problem is solved in the time domain. As an example, we consider a
very high aspect ratio, very flexible wing, such as the wing on a high-altitude, long-endurance
reconnaissance airplane. Such wings can be structurally modeled as beams. The example wing
is represented and the governing equations in dimensionless variables are given in figure 1. Over-
dots denote derivatives with respect to time, and primes denote those with respect to position.
Dy and D are rigidities and W is the weight of the wing per unit of length; in dimensionless
variables they decrease as the speed increases. g, and g, have the same values at all speeds.

The wing is modeled as a beam with no torsional-flexural structural coupling. There is
torsional-flexural aerodynamic coupling. &(y,t) is the flexural twist angle, v(y,t) is the trans-
verse deflection, and u(y,t) is the axial displacement resulting from the deflection. In the
equation for v the radius of curvature is represented by a two-term (nonlinear) expansion. The
distributed aerodvnamic torque @, and loading Q, are functions of the current state as well as the
history of the motion. There are no formulas for Q; and Q,; they are obtained from a computer
program that can reliably provide time-accurate forces acting on a streamlined body execut-
ing an arbitrary motion, something that no simple formula can do. The aerodynamic model
is inherently nonlinear. The procedure is to numerically couple these three partial-differential
equations with the computer code that provides the aerodynamic loads and solve for ¢, v, u, Q,
and @ as functions of y and t, for arbitrary initial disturbances, airspeeds, and in some cases
motions of the ailerons (not shown) simultaneously and interactively.
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In figure 2, some numerical results are represented. Here the wind speed is near critical,
and the response is a limit cycle. The tip deflection is around 20% of the semi-span. In the
case of the airplane called Condor, this tip deflection corresponds to about six meters. At
speeds sufficiently below the critical the fast Fourier transforms of the numerical results show
the presence of two frequencies in the decaying response to an arbitrary disturbance. As the
wind speed approaches the critical, the two frequencies merge, as one would expect from classical
treatments, and a limit cycle evolves, as one would not expect from classical treatments. As the
wind speed increases further and reaches a point sufficiently above the critical, the limit cycle
breaks down, and the amplitude of the response begins to increase while its frequency begins to
decrease. The noticeable evolution of organized (one—frequency, constant-amplitude) motion,
which occurs as the wind speed increases toward the critical, is symptomatic of impending flutter
and can be used to trigger active control of the ailerons to suppress the instability.

This example as well as others will be used to explain the procedure, demonstrate the
considerable capability of this type of approach to modeling aeroelastic behavior, and provide
some new insight into the physics of actively controlled, unsteady, and unstable aeroelastic
behavior.

qi’; — -Dt(f)” = qQ1

FApT varm . -Db (2UIZUHH £ 100'v"v" + 3UHS)
1

= qQ—W - 5'2be9'2

1 4
u(y;t) = =5 J§ vy

LT GJ _ pL? _ pL. _ gL
= Twmpve D=y o= o= 2% TP

#(0,0) =0 ¢'(L,t) =0, v(0,£) =0, v'(0,t) =0, v"(L,t) =0, o"(L,t)=0

Qi = Qu(v, v, 4,4, and their histories ), Qs = Qb(v,i:,g{:,g@, and their histories )

Ser(t) = G19(0.95L,t)+G24(0.95L, 1), be,Le(t) = G39(0.95L,1)+G44(0.95L, t)
6+ 26wy, b + w2 = w26,

Figure 1. A high-aspect-ratio wing modeled as beam, governing equations, boundary
conditions, and feedback-control laws.
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Figure 2. The response of the wing in twist, ¢,

and bending, v, to an initial disturbance
near the critical speed. Limit-cycle behavior.
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Takao Yamaguchi
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1. Introduction

Experimental results are presented on chaotic vibrations of a shallow cylindrical shell-panel with
square boundary subjected to lateral excitations. The boundary of the shell is arranged to be a
simply-supported edge and an elastic support in an in-plane direction. Three types of shells with
different curvature are examined. Changing the exciting frequency, the frequency regions are
examined carefully where chaotic responses are generated. The chaotic responses of the shell are
confirmed by the Fourier spectrum analysis, the Poincaré projection onto phase plane and the
maximum Lyapunov exponent. Stability boundaries of the chaotic vibration are clarified. Moreover,
interactions of the mode of vibration generated in the chaos are discussed.

2. Shell-Panel and Boundary Condition
Figure 1 shows the shell-panel and the supporting frame. A test shell of phosphor bronze sheet

with thickness #=0.205 mm is rolled to a cylindrical surface with radius R. The shell is cut to a
square form of length a=b=140 mm. Physical quantities are obtained as mass density =8 88x10°
kg/m?, Young's modulus E =99.5 GPa and Poisson's ratio v.=0.33. The radii of the shells are
measured as R=4350 mm, R=2220 mm and R=1760 mm, respectively.

To compose the simply-supported boundary condition, the rounded edge of the shell is connected
to the supporting frame by wrapping and pasting thin films along the boundary alternately.
Consequently, elasticity of the thin film acts as an elastic constraint in the in-plane direction.

3. Vibration test and Procedure
The shell was excited periodically by the vibration exciter through the shell frame. Measuring
the relative displacement of the shell to the supporting frame by two laser displacement sensors, the
responses of the shell are recorded. The following non-dimensional notations are introduced.

&=xla, n=ylb, = a’IRh, B=alb, w=W/h, pd=adpa4!D. q=0.u zﬁth. =01, w=27f182, (1)

D = Eh*112(1 = v¥) , 2=(1/a”)\/Diph 2)

Where, D is the bending rigidity of the shell. @ is the non-dimensional shell curvature. f3 is the
aspect ratio of the length of the rectangular boundary. p, is the non-dimensional intensity of
distributed load due to the periodic acceleration a,. ¢, isthe non-dimensional static load by the

concentrated load 9 . @ and Tare the non-dimensional exciting frequency and the non-dimensional
time, respectively. f is the exciting frequency.
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4. Results and Discussions

The aforementioned shells of o =23, ®=43 and o = 54 are tested. Figure 2 shows the static
deflection w of the shell under the concentrated force g,. w is measured at the point £ =0.57 and 7
=0.43 of the shell. The shell shows the character of soft-hardening spring. For the typical shell of
oo =43, the negative slope appears in the restoring force. It will cause a snap-through buckling by
an ultimate level of g.. Figure 3 shows the frequency response curves. w,.. is the root mean
square value of the periodic response. @ is the non- dimensional exciting frequency. In the figure,
the regions of the chaotic vibration are assigned by the named chaos. In the figure, (m,n:j )denotes
the type of resonance response, in which (m,n) is generated mode of vibration, while, j indicates
the type of resonance. The integer m and n imply predominant half wave number of the deflection
in the x-direction and y-direction, respectively. For example, (2,1:1) means the principal resonance
of the mode (2,1), while, (1,1:1/2) means the sub-harmonic resonance of 1/2 order with the mode
(1,1). (m,n:2) and (m,n:3) mean the super- harmonic resonance of 2 and 3 orders, respectively.
Figure 4 shows the time progresses of the chaos of the shell under the forcing amplitude
p4=1500. The time history has no periodicity and exhibits complicated movement. The Poincaré
maps of the chaos are recorded more than 6000 points at phase delay 6 =60 degree measured from
the maximum amplitude of the exciting force. Figure 5 shows the maps at ®=48.7, w=45.6 and
@=35.8. The phase plane of the deflection w and the velocity w,,, is measured at £=0.57
andn=0.43. The projection on the map changes by the variation of exciting frequency. The
maximum Lyapunov exponent A of the chaos is shown in Figure 6. The maximum Lyapunov
exponent converges to non-integer constant values more than e=6. This implies that number of
vibration mode related to the chaos exceeds more than three predominantly.

5. Conclusion

The main results can be summarized as follows:
(1) The violent chaotic vibrations are generated close to the responses of principal resonance,
sub-harmonic resonance, super-harmonic resonance and internal resonance, respectively. These
responses are corresponded to lower modes of vibration relatively.
(2) In the shell of small curvature, the chaos is emerged accompany with the internal resonance.
While, the shell of larger curvature, the chaos is generated due to the dynamic snap-through and
the condition of internal resonance.
(3) As the curvature of the shell increases, the maximum Lyapunov exponent grows to a large
magnitude. Furthermore, the mode interactions to the chaos are found to be of complicated.

References
1. Nagai, K., ‘Experimental study of chaotic vibration of a clamped beam subjected to periodic lateral forces'. Trans. of
Japan Soci. of Mech. Engrs 56-525. 1990, 1171-1177 (in Japanese).
. Nagai. K. and Yamaguchi. T.. *Chaotic vibrations of a post-buckled beam carrying a concentrated mass (1st Report,
Experiment)’. Trans. of Japan Soci. of Mech. Engrs 60-579. 1994, 3733-3740 (in Japanese).
3. Yamaguchi, T. and Nagai. K., *Chaotic vibrations of a post- buckled beam carrying a concentrated mass (2nd Report,
Theoretical Analysis)’. Trans.o f Japan Soci. of Mech. Engrs 60-579, 1994, 3741-3748 (in Japanese).
4. Nayfeh, A.H.. Raouf, R.A. and Nayfeh. J.F.."Nonlinear response of infinitely long circular cylindrical shells to
subharmonic radical loads’, J.of Applied Mech., 58, 1991, 1033- 104].
5. Maestrello. L.. Frendi. A. and Brown.D.E.. ‘Nonlinear vibration and radiation from a panel with transition to chaos’.
AlAA J., 30-11, 1992, 2632-2638.
6. Nagai, K. and Yamaguchi. T.."Chaotic oscillations of a shallow cylindrical shell with rectangular boundary under cyclic
excitaion’, High Pressure Technology. PVP- Vol. 297, 1995, ASME. 107-115.
7. Yamaguchi, T. and Nagai, K. . ‘Chaotic Vibrations of a Cylindrical Shell-Panel with an In-plane Elastic-Support at
Boundary', Nenlinear Dynamics (to be appeared).
8. Wolf, A., et al.. ‘Determining Lyapunov exponents from a time series’. Physica 16D 1985, 285-317.

=)

51



b=140mm

Adhesive Tape / R

Figure. 1. Shallow cylindrical shell-panel
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Analysis and Optimal Design of Column Using
Earthquake Force for Controlling Vibrations

Kosuke Nagaya* and Toshiyuki Fukushima*

*Department of Mechanical Engineering, Gunma University
Kiryu, Gunma 376, JAPAN

This paper presents a method of vibration control for a column carrying a mass at its tip subjected to
earthquakes. A vibration isolation mechanism consisting of gear train for the column is presented.
Theoretical analysis for the column is developed, and to validate the method and analysis, experimental
tests are carried out for a model of the present mechanism. It is clarified that the vibration displacements
and the moments in the column are reduced significantly in comparison with the general column without
the mechanism. In the present column, energies for controlling vibrations are not required, because the
earthquake force is utilized as a control force. Therefore, the column has advantages as compared with the
columns having active vibration control system.

1. Introduction

In the Hanshin-Awaji earthquake in Japan, a number of structures and buildings were destroyed. To
reduce vibrations of structures and buildings, two methods are popular in practical use. One is the
vibration isolation method. Recently a number of studies have been reported by use of the method [1-
3].But the vibration isolation system is expensive, so the method has not been utilized thoroughly. The
other method is to strengthen the structures. The method is simple because the strength of structures
increases with their thickness, but a cost also increases with the thickness. Columns without wall used
high-way bridges and parking were destroyed in the earthquakes as just mentioned. If the columns are
destroyed, buildings are also destroyed, so it is important to prevent destruction of columns used such
structures. Gravity forces of the building apply to the column, so the bending moment at the base becomes
significantly large when the deflection at the tip occurs due to an earthquake. Hence, it is :mportant to
prevent the tip displacement of the column under earthquakes.

The earthquake has significantly large energy, so if its energy is applicable to the control energy, the
vibration can be reduced without increasing the thickness of column. But the studies on this standpoint
has not been reported. From this situation, this paper presents a method for reducing the tip displacement
of the column by using an earthquake force as a control force. To transform the earthquake force to the
control force, a gear train mechanism is inserted in the hollow column. In the mechanism, an inertia force
of the mass at the tip of the column is transformed into a control moment. The theoretical analysis has
been developed on the proposed vibration control system. To validate the present method and analyses ,
experimental tests have been performed.

2. Principle of the Column

Figure | depicts a geometry of a hollow column having a gear train mechanism inside. The center of
the gear 2 is rigid joined to an end of a rigid bar 1 whose other end is rigid joined to the tip of the column.
The gear 2 engages into the middle gear 3 whose center is pin joined to the column. The gear 3 makes the
rotation of the gear 4 whose center is rigid joined to the column as shown in Fig.1. In this mechanism, if
the tip of the column moves in the right direction, since the gear 2 moves in the right direction, the gear 3
rotates in the clockwise direction. Then the gear 4 rotated in the counterclockwise direction. Since the
center of the gear 4 is rigid joined to the column, restoring moment M, is generated. The moment reduces
the deflection of the column. In this system, if the gear 4 is small in comparison with the gear 2, the angle
of rotation of the gear 4 is larger than that of gear 2, so the moment M, increases with the gear ratio.

3. Theoretical Analysis and Experiment

Theoretical analysis has been developed for the column with the gear mechanism by using the transfer
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Fig.1 Geometry of the present column )
Fig.2 Column used in the experiment.

matrix method. The analysis is omitted here, and the numerical results are shown. for a model. Fig.2
shows the model used both the numerical calculation and experiments. In the model, the column is made
of two flat steel plates ( hereafter it is called as the column plate) with a base plate and atop plate. The
top plate is pin joined to the column plates, so the resisting moment between the top plate and the column
plate does not occur. Three gears are inserted between two column plates, whose centers are rigid joined
to their shafts. The shafts are pin joined or rigid joined to the slender side plates whose ends are pin joined
to the sides of column plates. The black dot denotes the rigid joint and the white dot the pin joint. There is
a slit in the side plate for the upper gear (gear 2), so the shaft of the gear 2 moves in both right and left
directions, but the rotation is restricted because the shaft is rigid joined to the rigid arm 1.

A mass lies on the top of the column, and the base is excited by the oscillator. The displacement of the
mass was measured by the non-contact displacement sensor. The strains at two points (x=/¢=0.025[m],
and x=/,=0.338[m]) from the base were measured by the strain meter.

Figure 3 shows the comparison between the theoretical results and experimental data for the frequency
response of the bending moments at the base. It is seen that the resonance frequency of the present column
increases, and the peak value at the resonance frequency decreases due to the friction among gears.
Especially, the moments of the present column are significantly smaller than those of the general column
for low frequencies less than the resonance frequency. It is ascertained that the analytical results are in
good agreement with the experimental data.

4 Optimal Design
There are optimal values for the radii of gears, length . of the arm, so to have the large control effects,
the optimal design is of importance. In the design of the column, the bending moment at the base becomes
maximum when the principal frequency of the earthquake is less than the first resonance frequency. If the
gear train is inserted in the column, the reaction force Q increases with the control force. Then the gear
teeth becomes large. Then, to have the optimal values of the parameters as just mentioned, the following

cost function is applied:

J=a, L |M(w)dew + azL |0(@)dw
)
where M(w) is the bending moment at the base, O(w) is the reaction force shown in Figl, @ the
principal angular frequency of the earthquake, @, and @, the lower- and upper bound of the considered
frequency region, @, and @, the weighting coefficients. Consider a hollow square cross section column

with length =300mm, width =300mm, height = 4000mm, mass = 505 kg. The mass of 1000 kg lies on the
tip of the column. Numerical calculations for the optimal design are carried out using the data as just
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mentioned. In this calculation, the considered frequency region is taken from 2Hz to 4.5Hz in which
principal frequencies of the earthquake in Japan are included. Figure 4 illustrates the frequency response
for the moment at the base of the column. It can be seen that the resonance frequency increases for the
curve after optimization. Especially, the moments in the considered frequency range (2 Hz to 4.5Hz) are
significantly smaller than those without gears.

4. Conclusion

The present article provides an intelligent column in which the earthquake force is transformed to the
control force for reducing vibrations of the column without using sensors. Theoretical expression for
obtaining the displacement and moment in the column has been presented. To validate the method and the
analysis, experimental tests have been performed for a model of the column. A method of optimal design
for the column has been also presented. It is clarified that the present column is applicable for reducing
vibrations of the column under earthquakes.
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Analytical solution to the mode shape differential equation of
some non-uniform Euler-Bernoulli beams

S.Naguleswaran
Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand

Summary

Non-uniform beam elements occur in aeronautical, aerospace, civil, mechanical and robot
engineering applications and the lateral vibration of such beams has been the topic of investigation
by several researchers. The variation in beam cross-section may be continuous or discontinuous.
Numerical methods like Rayleigh-Ritz, Galerkin, finite element method etc have been used to obtain
the natural frequencies. If the mass per unit length and the flexural rigidity vary continuously then
for some Euler-Bernoulli non-uniform beams the mode shape differential equation admit analytical
solution. Frequencies, mode shape details etc obtained by analytical methods may be used to
judge/validate results obtained by numerical methods.

Consider an Fuler-Bernoulli beam whose mass per unit length and flexural rigidity at the big’ end
are m(f) and EI(£) respectively. If the variation of mass per unit length and flexural rigidity are
continuous then m(x) = ¢,(x)m(¢), EI(x) = ¢,(x)EI(¢) where ¢,(x) and $,(x) are continuous
functions of x. A ’complete’ beam is in the range 0<% < . A ’truncated’ beam has the portion
of length «f removed from a ’complete’ beam and is in the range af < x < {. For the beam
vibrating at a natural frequency o if the amplitude at coordinate X is y(x), then the bending
moment M(x), shearing force Q(x) and the equation of motion are

M(x) = $,(0EI(0)dy(x)/dx, Q(x) = - dM(x)/dx, dQ(X) + ¢,(x)m(£)e’y(x) =0 (1,2,3)
and the mode shape differential equation is
d*[9,(x)EI(2)d%y(x)/dx?}/dx’ - ¢,(x)m()e’y(x) =0 4)

This equation subject to the boundary conditions may be solved numerically but analytical solution
is not available for all combinations of ¢,(x) and ¢,(x).

Consider the case ¢,(x) = (x/£)? and ¢,(x) = (x/f)° with p>0 and gq> 0. Such beam elements
occur in engineering applications. For example (p, q) = (0, 0) isa uniform beam, (p, @) = (3, 1)
is a uniform wedge, (p, Q) = (4, 2) is a uniform cone or pyramid beam and (p, Q) =(1,1)isa
beam of constant depth and linearly varying breadth. The author will review several publications
on the lateral vibration of the beams of the above types.

It is prudent to express the governing equations in dimensionless form with the introduction of the
dimensionless variables X = x/f, Y(X) = y(x)/¢, MX) = M(X)¢/EI(¢), QX) = Q(x)£*/EIL(¢),
p = m(£)o*¢*/EI(¢) and the operator D" = d”dX". One gets

MX) = X'D*Y(X), QX) = - DXD*Y(X)] (5,6
and the dimensionless mode shape differential equation
D [XPD’Y(X)] - pXY(X) =0 (7)

For a ’complete’ beam equation (7) is applicable in the range 0 <X <1 and for a "truncated’
beam in the range o < X < 1. Equation (7) is linear with regular singularity at X =0 and the
general solution will consist of the superposition of four independent solution functions. The four
constants of integration are now eliminated from the boundary conditions to yield the frequency
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equation which will have an infinite number of roots. A ’complete’ beam will be ’sharp’ ended
and cannot sustain a bending moment or shearing force at this end and the frequency equation is
a 2x2 determinant equated to zero. No such restriction is needed at the 'small’ end of a
"truncated’ beam and the frequency equation is a 4x4 determinant equated to zero.

Brief description of some of the special cases of equation (7) follows. If (p, q@) = (0, 0) is a
uniform beam and the solution of D*Y(X) - pY(X) =0 is

Y(X) = C,sinp'“X + C,cosp'“X + C,sinhp“X + C,coshu'“X (8)

It can be shown that equation (7) admit Bessel’s function based solution if the exponents p and q
satisfy the relation

(p+a)(p-9-2)(p-q-6)(3p-q-8) = 0 (€]
and the corresponding solution is
Y(X) = X[CJ,(bBX™) + C,Y,(bBX"™) + CiI,(bBX"™) + CK(bBX')] (10)

where B =p'®, a=(2-p-Q)/4, b=4/(4-pt+q), 0’ = [(2-p-9)’ + 2(p*+Q)(P-q-2))/(4-p+q)".
For certain combinations of p and q Y(X) and/or DY(X) are singular at X = 0.
If p = q + 4, the mode shape differential equation degenerates to the Cauchy differential equation

X‘D*Y(X) + 2pX°D’Y(X) + p(p-DXDY(X) - pY(X) = 0 (11)
Fortuitously the coefficients are such that the solution is as follows
Y(X) = X®P?{C,sinh[y,In(X)] + Cycoshfy,In(X)] + Cssin[y,In(X)] + Cscos[y,In(X)]} (12)

where v, = {2(p-2)+2[(p-2)" + 4u]'? + (3-p)}'% 12 = {-2(-2)2[(@-2)" + 4u]"* - (3-p)'}"”
Values of p exist for which Y(X) and/or DY(X) is singular at X = 0.

Apart from application to engineering the mode shape differential equation (7) is mathematically
interesting. The method of Frobenius is used to solve it but each combination of p and q calls
for individual treatment. Consider the polynomial

Y(X0) = L. ()X (13)
where ¢ is an undetermined exponent, £ is the exponent factor and n=0, 1, 2.....0. It can be
shown that Y(X,c) is a solution of equation (7) if & and the coefficients a,,(c) are chosen as
follows

E=4-p+gq, P.(c)a,y(c) - pa(c) =0 (14,15)
P,.,(c) = [c+ng][c+nE-1][c+nE-2+p][c+nE-3+p] (16)
and c is a root of the indicial equation

Py(c) = c(c-1)(c-2+p)(c-3+p) = 0 (17

Choice of a,(c) = 1 will not result in loss of generality. The four solution functions are
Y(X,€)em0,1.2.93 and for brevity let

[Y(X,0) Y(X,1) Y(X2-p) Y(X3-p)] = [EX) FX) GX) HX)] (18)
If the four functions are independent and unbounded the solution of equation (7) is
Y(X) = CEX) + GF(X) + C,GX) + CHX) (19)

where the constants of integration are determined from the boundary conditions. The method of
solution need be modified if the indicial equation (17) has coincident roots or if one or more of the
solution functions are unbounded and this occurs in equation (16) if P,,,(c) = 0. Here the general
solution will have functions with logarithmic terms. It will be shown that solution functions with
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logarithmic terms occur if the ratio of the difference between any two roots of the indicial equation
(17) to the exponent factor is an integer. If p - q > 4, the four solution functions will be in
descending powers of X and therefore singular at X = 0. The writer will discuss these aspects
at the symposium but examples are briefly discussed below.

Consider a beam of rectangular cross-section of constant depth and breadth proportional to X®. The
exponent factor £ =4 and therefore for all positive values of s two or more solution functions
are not singular at X = 0 and the natural frequencies of 'complete’ beams may be calculated.
Logarithmic terms will occur in up to two solution function/s if s is a positive integer except
multiples of 4. From equation (9) for s = 4 the solution can also be expressed in terms of
Bessel’s functions.

Consider a non-uniform wedge. This is a beam of rectangular cross-section of constant breadth and
depth proportional to X*. From equation (9) the solution for a wedge with s =1 can also be
expressed in terms of Bessel’s functions. The mode shape differential equation, the exponent factor
and the indicial equation of a non-uniform wedge are

D X*DYX)] - pXYX) =0, § =4 -2s, c(c-1)(c-2+3s)(c-3+3s) =0 (20,21,22)

If the indicial equation has coincident roots four independent solution functions will not eventuate
and here one needs

BY(X,)/de = XIn(X) + L (X" 4HDy, (X,c),

Word(KC) = Yoy (X,) = 1[eH4-2s)(n+1)] - 1/[cH(4-25)(n+1)-1] - 1/[c+H(4-25)(n+1)-2+35]

- U[e+H(4-2s)(n+1)-3+3s], w,(X,c) = In(X) (23,24,25)
If's = 1/3, three solution functions are Y(X,c).,;.; and the fourth is [0Y(X,c)/d¢] . Ifs =2/3 two
solution functions are Y(X,c)o, and the other two are [0Y(X,c)/0c],;. If s =1 although the
indicial equation has three distinct roots only two independent solution eventuate and the solution
corresponding to the third root is unbounded. The general solution is derived with a slightly
different approach. It will be shown that unbounded solution functions occur if s =2 - 1/(2n+2),
2 +4/(2n-1), 2 + 3/(2n-1), 2 + 1/(20+2), 2 + 5/(2n-1), 2 - 4/(20+5), 2 - 5/(2n+5), 2 - 3/(2n+5).
Note that for s = 2, the mode shape differential equation degenerates to a Cauchy differential
equation. If s >2, Y(X) is singular at X =0 and the natural frequencies of such ’sharp’ ended
wedges cannot be calculated. For s2 1.5 DY(X) is singular at X = 0. This contradict the linear
Euler-Bernoulli theory of bending. Frequencies of *sharp’ ended wedge beams with 2 2s2 1.5
are therefore be subject to this limitation. The general solution is applicable to ’truncated’ non-
uniform wedge beams since the solution is not singular at the ’small’ end. Further discussion is
reserved for the symposium.

A non-uniform cone beam is formed by rotation of the curve y = Ax* about the x-axis.
Aspects of the unusual properties of the non-uniform wedge beams are found here along with some
additional facets.

Numerical methods like Rayleigh-Ritz, Galerkin, finite element method etc are very useful tools in
the study of lateral vibration of non-uniform beams. Analytical solution however highlight the
deficiencies in study based on linear Euler-Bernoulli theory of bending and it may not be possible
to obtain such information from numerical methods.

A number of references are available and will be surveyed at the symposium.
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VIBRATION ANALYSIS OF THREE DIMENSIONAL COMPOSITES
IN CYLINDRICAL COORDINATES
CONSIDERING ARBITRARY BOUNDARY CONDITIONS

Yoshihiro NARITA
Department of Mechanical Engineering, Hokkaido Institute of Technology,
7—15 Maeda, Teine, Sapporo 006, Japan

Abstract— The objective of the present paper is to propose a semi—analytical method, based on the
three dimensional theory of orthotropic elasticity, for the free vibration problem of laminated
composites expressed in cylindrical coordinates. The method is based on the Ritz method, but
unlike conventional Ritz methods, it can accommodate arbitrary boundary conditions on each face.
Numerical results are given for natural frequencies of a wide class of geometry, ranging from solid
cylinders and thin shells to flat solid cirular and annular plates, and the applicability of the present
method, which cannot be obtained by the two dimensional theories, is widely demonstrated .

INTRODUCTION _

With the increasing demands for fibrous composites in structural applications, it is becoming
essential to understand vibrational characteristics of composite components. Although many
references are found on vibrations of composite shells and plates, the majority of them are based
upon the fwo dimensional approach,which is either the classcical thin plate/shell theories or the
thick shear deformation theories to account for the transeverse shear effect. It is desirable
however to use the three dimensional approach for problems of very thick laminates and for testing
results from the two dimensional theories. Unfortunately, few three dimensional solutions are
available for such purposes in the literature, particularly when arbitrary boundary conditions are
concerned.

In the present analysis, the strain and kinetic energies are formulated in cylindrical coordinates
by using the three dimensional stress—strain and strain—displacement relations. After applying the
variational principle to the functional (the sum of the strain and kinetic energies), a set of linear
homogeneous equations containing eigenvalues (i.e. , frequency parameters) is derived in terms of
coefficients of displacements. The displacement functions are given to satisfy prescribed kinetic
boundary conditions by using the boundary index previously introduced in [1]1[2]. Numerical
examples are presented for natural frequencies of laminated composite solid cylinders and thin
shells, and are compared to existing results. Also by taking on specific aspect ratios, results
were obtained for flat soid circular and annular plates. Such wide applicability of the present single
solution is well demonstrated , which cannot be accomplished by the two dimensional theories.

:
/L),
=

E;

Lz | Le

Fig 1. Coordinate system and diménsion of thick circular cylindrical composite.
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METHOD OF ANALYSIS

Figure 1 shows the geometry and coordinate system used in the analysis. The x axis is taken
along the center of circular cross—section of the cylinder, and the # and : axes are in the
circumferential and radius directions, respectively. The outer and inner radii are denoted by a
and b, respectively, and the length of the cylinder is L. The principle material axes are
assumed to be parallel to the x, £ and z axes, and it is stacked as cross—ply laminates in the =
direction. Under these assumptions, the stress—strain relation in the k—th layer is given by

@ | [Qu Qu:Qu:0 0 0 T™[e
s Qu: Qu O:.\ 0 0 0 Es
O, = Qi Qs Qx 0 0 0 &: (1)
Tos 0 0 0 Q.0 0O Yeou
Tes 0 0 0 0 Qs 0 Yar
Tao 0 0 0 0 O Qs | Yoo

where Q' (i,j=1.2, .. .6) are elastic constants defined by moduli of elasticity and Poisson’s ratios
(See references [3][4]). The maximum displacements in the x, # and - directions during
infinitesimal vibration are denoted by u, v and w, respectively, and the strains are expressed in
terms of the displacements. By using the relations, the maximum strain and kinetic energies are
obtained by summing up energies for all layers and are written in the form

l = T ik
U= E—EI{:} [Q1%{e}z dxdBdz

. u 2)
T.ungm’gfp{u v wli{o ]z dxdfd:z

with {e}= [u,.. (w+v..)’ W [w"_u)ﬂr,.. PPN S }r 3)
4 Z 4

where p is the mass per unit volume,  is the radian frequency, and (,x). (, 8 ). (23)
denote differentiation with respect to x, # and z axes, respectively. For clarity of the analysis,
nondimensional quantities are introduced, such as § =x/AL/2),d ={2z—(a+b)}/a+b) and Q =
wa(p /4E.)"'"* (frequency parameter). The displacements are then assumed in the form

u(£.6.8)=E5,F, AX.(£)Z(5)osNo
0(£.6.8)=515 BuXu(£)Z(8)sinN8 @)

w(£.6.8)= 115y CoXa(€)2.(8)cosNG

where Aj, Bu and Cm» are unknown coefficients, N is the circumferential wave number,and X

(€ )and Z( 6 ) are specific polynomials having boundary indeces that allow assumed solutions

(4) to meet desired boundary conditions [1][2]. Inthecaseofu( § , 8,8 ), X; and Z; are
xltotés({_'_l)uh(g_l)uh
Z(8)=8(8+ 1) (65— 1)

®)

where bclu ~ bc4u are indeces to constrain the u displacement on the surface I ~ 4 (I: left end
surface at x=—L/2, 2: right end surface at x=L/2, 3: inner surface at z=b, 4: outer surface at
z=a). Substitution of O or 1 into the index bclu ~ bcdu makes the displacement unconstrained
(free) or constrained (fixed) on each face.

For the example of hollow cylinders (shells), all the displacements on outer and inner surfaces
are made free (bc3u=>bc3v=bc3w=bc4u=>bcdv=bc4w=0) and the other indeces are
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Both ends simply supported Both ends clamped
belu=bc2u=0 ( u is free on both ends ) bclu=bclv=bclw=1 ( u,v and w are
belv=bclw=bc2v=bc2w=1 ( v and w are fixed ) be2u=bc2v=bc2w=1 all fixed )

On the other hand, for flat circular(annular) plates (L << a), all the displacements on both ends
(i.e., plate surfaces) are set free (bclu=bclv=bclw=bc2u=bc2v=bc2w=0) .

Following the Ritz method procedure, the functional F=Tmax—Umax is extremized for a
stationary value: ¢ F/d Aj=4d F/i Bu=9 F/i Cmn =0. This yields a set of linear equations in
terms of {Ajj, Bu, Cmn} and the eigenvalues of the system give frequency parameters Q .

NUMERICAL RESULTS AND DISCUSSIONS

Table I presents comparisons of the present 3D results with those obtained in other references.
The values are compared in Table I(a) with the finite element results in reference [4] for the
three—layerd thin shells. The FEM values are based on the classical thin shell theory (CTST).
For thicker shells where the transverse shear effect is not negligible, the first—order shear
deformation shell theories (FSDST) may be used for better accuracy in the two dimensional analysis.
In Table I(b), the present results are compared to those obtained by the transfer matrix method
(TMM) and FSDST [5]. The present parameters Q are again in good agreement with the
reference values given for a fixed N (=0). For all the values in the table (except for one case),
the present ones are slightly lower than the others, and this seems to reflect the fact that the 3D
analysis allows more flexibilities in the thickness direction than the 2D theories.

Table I. Comparison of frequency parameters Q for cross—ply laminated cylindrical shells ([0° /90" 0 ]

B.C. Method Q

(a) Classical thin shell theory (CTST) (a/H=50.5, a/L=0.2525)
(N=4) W=3) (N=5) W=2)

5—§ FEM[4] 0.07484 0.08312 0.09459 0.1299
Present 0.07469 0.08302 0.09444 0.1298
(N=4) (N=5) W=3) (N=6)
c—C FEM[4] 0.09459 0.1059 0.1089 0.1363
Present 0.09443 0.1057 0.1088 0.1359

(b) First—order shear deformation shell theory (FSDST)* (N=0)
S-S (a/H=10.5, a/L=1.05)

TMM[5] 1.530  2.244 3.323

Present 1.529  2.232 3.304
S-S (a/H=5.5, a/L=1.1)

TMMI5] 1.742 2.680 3.814

Present 1.735 2.675  3.857

*:E,=20E2, G:12=0.65Ez2, G2a=0.5E 2, v.12=0.25
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On the Discretization of Weakly Nonlinear

Continuous Systems

Walter Lacarbonara and Ali II. Nayfeh
Department of Engineering Science and Mechanics
Virginia Polytechnic Institute and State University

Blacksburg, VA 24061-0219

Abstract

Methods for the study of weakly nonlinear continuous systems are discussed. Approxi-
mate solution procedures based on discretization via the Galerkin method are confrasted with
direct application of the method of multiple scales to the integro-partial-differential equations
and boundary conditions governing nonlinear planar vibrations of a buckled bean around its
first buckled deflection. The case of primary resonance (Q ~ wy), where Q is the excitation
frequency and wy, is the natural frequency of the nth mode of the beam. is investigated.
Frequency-response curves are generated using both approaches and contrasted with experi-
mentally obtained frequency-response curves. It is shown that the discretization can lead to
erroneous quantitive as well as qualitative results if the discretization is not performed by

using a complete set of basis functions that satisfy the boundary conditions.

In the great majority of recent works on forced nonlinear vibrations of dist ributed-parameter
systems, it has been a common practice to use the Galerkin method to discretize them by taking
as trial functions only the eigenmodes that are directly or indirectly excited. This discretization
procedure has two drawbacks. First, by minimizing the residuals, one discards the nonlinear
terms that are orthogonal to the eigenmodes assumed in the expansion. Second. the shape of the
motion is fixed a priori. On the contrary, by attacking directly a distributed-parameter system
with a reduction method, such as the method of multiple scales, one does not assume the form
of the solution a priori.

Troger and Steindl (1991) [1] showed that, in the context of snap-buckling problems, dis-

cretization techniques, such as the Rayleigh-Ritz and Galerkin methods, can lead to qualitatively
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erroneous bifurcation diagrams. By applying the direct procedure to several weakly nonlinear
distributed-parameter systems with quadratic and cubic nonlinearities (e.g.. reliel valves, sus-
pended cables, surface waves, cylindrical shells), Nayfeh, Nayfeh, and Mook (1992) [2], Nayfeh,
Nayfeh, and Pakdemirli (1994) [3], and Chin and Nayfeh (1996) [4] showed that finite-degree-of-
freedom discretization can lead to erroneous results.

In this paper, we first discretize the governing integro-partial-differential equation by using
the Galerkin method assuming that only the nth mode is excited. Then, we apply the method
of multiple scales to the resulting discretized equation to determine an approximation for the
frequency-response equation characterizing periodic motions. Next, we attack directly the gov-
erning equation and associated boundary conditions by using the method of multiple scales.

”Small” finite-amplitude transverse vibrations of a homogeneous Euler-Bernoulli, buckled

beam subjected to a uniform harmonic excitation are governed by
. 1 1 1
i+ 2ut + v + Piu" - bzqi"-/ d'u'dr — gbd)”f u?dx (1)
0 0
1 1 1
—bu"j du'dr — §u"/ udz = F(x) cos(Q + T)
0 0

where the prime and overdot indicate differentiation with respect to z and 1. respectively, ¢(z)
is the first buckling mode, and b represents the buckling level. The frequency-response equation
characterizing periodic asymmetric oscillations around the first buckled deflection are given by
12 , 3

0= —a.a’+ (W - ) (2)
where o denotes a detuning paramecter expressing the nearness of the resonance and a, has
different expressions depending on whether it is evaluated by the discretization or the direct
procedure. Figure 1 shows that the results obtained with discretization are qualitatively as well
as quantitatively different from those obtained with the direct approach. The discretization
procedure predicts a hardening behavior whereas the direct approach predicts a softening be-
havior, in agreement with the experimental results. Figure 2 shows the experimentally obtained
frequency-response curve generated by setting the buckling amplitude at the same level used to
calculate the curves in Figure 1. Clearly, the experimentally obtained frequency-response curve
exhibits a softening behavior, in agreement with the direct approach and in disagreement with

the discretized approach.
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Figure 1: Frequency-response curves in the case of primary resonance of the first mode. Solid

(dashed) lines denote the curve obtained with the direct (discretization) approach: b = 0.11 in.
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DAMPING PROPERTIES OF TWO-LAYERED CURVED STRUCTURES WITH AN
UNCONSTRAINED VISCOELASTIC LAYER

A. Okazaki

Department of Engineering Physics
Chubu University , Kasugai, Japan

1. INTRODUCTION

One of the simple methods of reducing the res-
onance amplitudes of structures is to coat their
surface with a high damping viscoelastic material.
Damping properties of two-layered flat structure
are almost independent of boundary conditions and
modes of vibration, and the ratio of the loss factor
n of a two-layered structure to the loss factor ng of
a viscoelastic material is given by

n eh (4h* + 6h + 3)

7 1+ eh(4h2 + 6h +3)’ (1)

where h is the thickness ratio, and e is the Young's
modulus ratio of the elastic viscoelastic layers
(1,2,3].

However, .damping properties of curved
structures are different from those of flat struc-
tures. The primary reason for this is that, for
curved structures, flexural and extensional defor-
mations are coupled with each other. It is shown
that loss factors of two-layered cylindrically curved
structures are generally less than those of flat beams
and plates, and depend on sectional shapes, fre-
quencies, modes of vibration and boundary condi-
tions as well as on the Young's modulus and thick-
ness each layer.

2. ANALYTICAL MODEL

Figure 1 shows the geometrical dimensions of two-
layered cylindrically curved structures. Layer 1 and
2 are taken to be the elastic layer and the viscoelas-
tic layer respectively. It is assumed that the en-
ergy dissipation primarily occurs in the viscoelastic
layer. The analyses are carried out, using the equa-
tions of motion on the basis of the Fligge's shell
theory[d].

(a) A cylindrically curved beam

(c) A cylindrical shell

Fig.1 The geometrical dimensions of two-layered
cylindrically curved structures.
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3. NUMERICAL RESULTS

3.1 CURVED BEAM

Figures 2 and 3 show the variation of n/ng with 6
for the following boundary conditions: Both ends
are simply supported (S-S), clamped (C-C), freely
supported (F-F), and hinged supported (H-H). One
end is clamped and other end is free (C-F). As
shown in Fig.3(b), damping characteristics of sym-
metric vibration modes of a F-F beam and a H-H
beam are strikingly different from those of other
beams. These differences are related to the exis-
tence of the extensional deformation. In the case
of the mode of inextensional deformation, /g re-
mains almost constant even if @ increases.

3.2 CURVED PLATE
Figures 4, 5 and 7 show the variation of n/ng with
6 for the following boundary conditions: (1) All
edges are simply supported (SSSS). (2) All edges
are clamped (CCCC). (3) Straight edges are simply
supported, and curved edges are freely supported
(SFSF). (4) Straight edges are clamped, and curved
edges are freely supported (CFCF). The analysis for
a CCCC plate and a CFCF plate is carried out by
the use of Kantorovich method|[5].

n/ne of a curved plate is usually smaller
than that of a flat plate, and the decrease of the
loss factor with bending depends on the aspect
ratio £ = L/a,6, the thickness-length ratio ¢ =
(H, + Hz) /2a,6, mode of vibration and boundary
conditions.

3.3 CYLINDRICAL SHELL

The variation of n/ng with A(= L/ma;,m : lon-
gitudinal ha.lf—wavenumber) for different c1rcumfer—
ential wavenumbers n is shown in Fig.8. Boundary
conditions are taken as simply supported. 1/ng de-
pends on the length parameter A and the wavenum-
ber n. n/ng for two-layered thin cylindrical shells
with large values of A are practically independent of
A, and their approximate values can be generated
from the equations

= .n _ _eh
=T @ = I+er

n _ eh(4h®+6h+3)
T 14 eh(4h? +6h+3)

(2)

. (3)

n>2

0.04

8  degrees

Fig.2 The variation of /ng with @ for S-S, F-F and
C-F beams (h = Hy/H; = 1,e = E3/E; = 0.01).
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Coherent scattering effects in
irregular structures

Douglas Photiadis
Naval Research Laboratory
Washington, DC 20375
Introduction

The scattering of elastic waves due to irregular variations in structural properties - variations in geometry
or material parameters - produces a wide range of phenomena. In the limits of very large irregularity or
very small irregularity, the effects of the scattering on the dynamic response of an elastic system lead to
two competing physical pictures. In a way, this duality is similar to the wave-particle duality in quantum
mechanics. In the small irregularity limit, the nature of the resonances of the system are nearly unchanged
from those of an idealized ‘uniform’ system and consist of either traveling waves or global resonances built
from traveling waves. In the large irregularity case, the scattering causes the modes of the system to localize
and the response of the system consists of a superposition of these local, nearly uncoupled oscillators. It is
in this latter case in which the coherent scattering effects due to irregularity are manifestly important. The
question we wish to address here is: In what kind of ‘real world’ systems is this really important, and how
should the investigator or engineer proceed in this case?

The physical basis for localization

Any spatial deviations in the properties of an elastic system will scatter elastic waves and., provided
such deviations are spread throughout the system, will produce multiple scattering phenomena. In many
situations however, coherence effects arising from this scattering will be negligible, and the scattering will
produce just a diffuse random background field. Indeed, prior to Anderson’s seminal work in 1958, this was
assumed to be always the case: Irregularity would simply tend to evenly spread out the energy in a system
and bring it to equilibrium, with each mode having an equal share of the energy. Such an assumption is
at the heart of the Statistical Energy Analysis(SEA). In the context of the wave picture, localization arises
from destructive interference and is a bit hard to understand. But in the context of coupled standing modes,
Anderson localization is quite natural.

Consider then a prototype system, consisting of a string with attached masses. Let us suppose the
masses to be rather heavy relative to the density of the string and fairly evenly spaced. In a modal picture,
we consider the system to consist of a set of coupled string segments, and work out the normal modes of each
segment with fixed ends. In this normal mode expansion, each segment is replaced by a set of oscillators.
Near a particular frequency, we may as an approximation retain only the nearest resonance (the single
band approximation) or perhaps the two nearest modes (the 2-band approximation). Qur system hence is
equivalent to a set of coupled simple harmonic oscillators and obeys,

—m;wzm,' = -k{Qz.v — Tij4] — .'.L'.'_g) - k,‘.‘I,‘ .

The individual oscillators have mass m; and stiffness k;, while the springs coupling the oscillators to one
another are taken to have the uniform stiffness value k. One quickly finds
2
(W — w?)z; = A: (Tit1 — zio1)
where we have written the coupling of the adjacent oscillators k in terms of the frequency bandwidth
Au? = 4k /m.

Each oscillator is a normal mode of a section of the string between two masses, and the oscillators
have different frequencies because of the different spacings. In the case of a string with uniformly spaced
masses, all the w; are equal and the traveling wave solutions exp(ikz) form a single band with a width
Aw?. To leading order, in an average sense, an irregular single degree of freedom coupled oscillator chain is
characterized only by the bandwidth Aw? and the spread of the w; about the mean value wp,

W = buw? .

What is the nature of the resonant states on the string? In the limit of large irregularity, §w? >> Aw?,
each local resonance frequency is quite different from its neighbor’s and energy is very weakly coupled down
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the chain. One is not surprised that the normal modes of this system consist of spatially localized states with
an exponentially localized wave packet arising from a more or less constant suppression factor (Aw? [6u?)
incurred a number of times as we march from site to site. This phenomena is localization due to irregularity.
In the opposite limit, weak irregularity, we expect strong coupling due to the close match of resonance
frequencies relative to the coupling, and hence extended modes. To some extent this is the case, although
at sufficiently large distances in this 1-dimensional example, exponential localization again sets in.

This is of course only a toy example, but it does serve to illustrate the main physics which underlies
localization phenomena. The key idea is that is energy is transmitted by well tuned neighboring oscillators
and that detuning is measured relative to the coupling of the oscillators to one another - or to the inverse of
the time it takes to transmit energy from one oscillator or portion of the string to the next.

System properties

The most important properties of the system which determine whether coherent scattering phenomena
will occur are system dimensionality, scattering strength /irregularity, and damping.
Dimensionality

System dimensionality plays a dominant role in determining the importance of irregularity. The reason
for this is primarily that each oscillator is coupled strongly only to its neighbors. In one dimension, there
are only 2 neighbors which may be well matched to any given oscillator. In two dimensions, even assuming
each oscillator must be the nearest neighbor, i.e. not related via a diagonal path (imagine a plate with
oscillators attached in a sort of lattice), the number of neighboring oscillators is 4, while in three dimensions,
the number of neighboring oscillators is 6. Should one be more realistic, and include diagonals, the numbers
of neighboring oscillators in this cubic array are 8(2-D) and 26(3-D) respectively. Clearly, for a given degree
of randomness producing a fixed variation of local resonance frequencies, our odds of encountering a nearby
resonance frequency are much greater as the dimension increases. This is indeed the case, and the localization
lengths increase dramatically as the system dimensionality increases.

In a linear chain system or an effectively 1-D wave system, one should suspect that localization phe-
nomena will be prevalent. Great efforts must taken to avoid small irregularities which will produce localized
modes - should global traveling modes be desired. In a 2-D system, localization phenomena will be much
weaker unless the scattering strengths and irregularity of the system are both large. In this scenario, the
prime suspects would be anisotropic systems in which wave behavior can become pseudo 1-D. In 3-D, it
turns out that it is quite difficult to achieve localized modes in realistic elastic systems, and most likely, only
in highly anisotropic systems are coherent scattering effects due to irregularity important.

Scattering strength/irreqularity

The above simple example makes clear that coherent scattering phenomena are greatly enhanced by
increased scattering strength, that is, decreased coupling, and increased irregularity. If our system is indeed
a coupled chain, or transparently equivilent to a coupled chain as is the string with masses, it is relatively
easy to determine the relevant ratio of frequencies, and hence to determine the importance of the irregularity.

In elastic wave systems, this is quite often not the case; the complexity of the system can make it
difficult to determine even what the appropriate oscillators would be. In this case, it is most straightforward
to measure or theoretically estimate the frequency bandwidths of the system and use this quantity as a
measure of the coupling of the undetermined oscillators. The variation of resonance frequencies arising from
the irregularity however may not be easy to either measure or estimate. This is an outstanding problem in
this area.

The role of damping

Damping is of course a mechanism which tends to destroy any coherence effects. Typically, the system
must be fairly lightly damped in order that localization phenomena due to irregularity is important. Inter-
estingly enough, damping increases as the coupling of the elements of the system decreases, just as is the
case for coherent scattering phenomena. The role of damping may be evaluated by estimating the damping
length, Ly = ¢,7, and comparing this quantity to the localization length L..

What tools should we use?
The standard tools .

Numerical simulations have proven to be a very powerful and useful tool in the past. Any effectively
1-D system for which detailed predictions are desired should be analyzed in this way. Even reasonably large
systems of this sort will yield to modern computer power. In 2-D and 3-D, this capability is still beyond our
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grasp except at low frequencies, frequencies for which the phenomena we have been discussing is not relevant
in any case. But further advances in computer speed or algorithms may allow direct numerical approaches
to be quite useful.

The statistical energy analysis(SEA), as it stands, is not useful in this context. SEA assumes at the start
that the various modes of the system within a particular bandwidth come to equilibrium. This is precisely
what does not occur in a system for which coherent scattering is important.

Highly idealized modeling

Highly idealized modeling, replacing one’s system by a set of coupled oscillators for example, can be
a useful guide in qualitatively understanding the phenomena which will take place, and in addition, in
identifying the critical parameters. In this area, because of the intense research in condensed matter physics
over the past 30-40 years, a number of useful results have been obtained which can be directly applied to
problems of this nature. It is not however, completely straightforward to exploit these results, and thus far,
only a few of these results have been exploited.

Multiple scattering theories

The multiple scattering theories employed in a number of fields were built to solve the problem we have
addressed here. Nevertheless, these theories still pose significant mathematical difficulties. For relatively
weak scattering/weak irregularity, the multiple scattering theories will seamlessly provide mean field theories,
corrections to these theories, and predictions of anomolous frequencies. In the case of strong scattering,
strong irregularity the multiple scattering theories are not so effective. The reason for this is clear: At a
basic level, these theories assume one’s system is a perturbed uniform elastic medium, at least locally. When
this is not true, one may expect trouble from this approach. Nevertheless, much can be expected from these
models before they break down.

Future directions..

There have been a number of new tools proposed to handle this problem. Here, I will mention just a
couple. Recently, Bucaro et. al. proposed a model based on the local nature of the response of the system.
This model basically assumes a point’ reacting impedance for the case of a ribbed shell with many internal
oscillators. The model moreover assumes very little phase correlation even in the case of a spatially coherent
external source. Good agreement with experiment was obtained. This result holds out the possibility that
models of this sort, i.e. models in which each component of the structure are handled separately, can be
successful.

Another recent advance was made by Woodhouse, Power, et. al. In this work, SEA was modified to
take account of the knowledge of the mode shapes resulting from irregularity. This work too has produced
some good results, and holds promise for the future.

This work was supported by the Office of Naval Research.
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THEORY AND VIBRATION OF LAMINATED BARREL SHELLS

by

Mohamad S. Qatu
Department of Mechanical Engineering
Lake Superior State University
Sault Ste. Marie, M1 49783

INTRODUCTION

This paper deals with analysis of laminated composite barrel shells. Barrel shells are essentially cylindrical shells for
which the longitudinal direction of the shell has some initial curvature, The curvature may be due to imperfection in
manufacturing, or is a part of the design as is the case in barrel shells. The equations are developed for the general
dynamic analysis of laminated barrel shells and can be reduced to the static analysis and the free vibration analysis.
Natural frequencies are obtained for open and closed, isotropic and laminated barrels shells having shear diaphragm
boundary conditions. For composite shells, the effects of curvature, thickness and orthotropy ratios as well as the
lamination sequence on the nondimensional natural frequency parameters are studied.

A considerable amount of information on the free and forced vibration of cylindrical shells can be found in the books
of Leissa (1973) and Soedel (1993). Recent surveys are found for the analysis of laminated shells (e.g., Noor et. al.,
1996). A treatment is introduced by Soedel, 1993 to deal with barrel shells and simplified equations were derived.
Barrel shells are treated as a special case of shells of revolution in which the angle that the radius of curvature along
the shell direction makes with the center of revolution axis is close to 90 degrees. This simplified the equations and
introduced constant lame parameters. This approach to the treatment of barrel shells is adopted here.

EQUATIONS FOR BARREL SHELLS
Consider a shell of revolution as shown in Fig. 1. The fundamental form can be written as (Soedel, 1993):
(ds5)" = (da)’ + sin® (¢)(dﬁ)2, where  da=R,d¢, df=R,d6 (1)

The Lame parameters are: A =1, B = sin(¢) (2)

Fig. 1. Parameters used in barrel shell equations
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For barrel shells of revolution, the angle ¢ varies between 75° and 105°. Thus, the following approximation is made:
sin(¢) = 1. (3)

The fundamental form can the be approximated as :
(ds)" ~(da)’ +(ap)’ @

and the Lame parameters can be written as
A=1, B=1 . (5)

Furthermore, we will assume the radius of the barrel Ry to be constant. Based on these assumptions, we will only be
able to consider barrel shells that have |a/R,| < 0.5, and |R.(1<os(a/2 R,)| >R, .

Closed cylindrical shells can be treated by replacing the coordinate B with 6, and letting b = R, (Leissa, 1973). It
is also worth noting that the edge shear diaphragm boundaries repeat them selves at the nodal lines in the
circumferential direction. The present formulation accounts for the case when b > 2 7 R,

Kinematic Relations

Midsurface strains and curvature changes are :

. B, k,=i[l‘-°-+ v, -ﬂ_wa]

8“, =2 50 + Ra aa R{l Rﬂ'ﬂ 5“

. OV, W | u v, &éw (6)
Efp=—24+—= ko= g e X e

" 6B R, . é‘ﬂ{R” R, a]

y =é‘v°+0"u°+2w alu v, Jw v, u ow

af = (% R r=— C I TS Y (T YRl I o

ap da\R, R, Jp JB\R,, R, Oa

Stress Resultants

The stress resultants are related to middle surface strains and curvature changes through:

N, —An A, Ag¢ B, B, Bg 1 &5 ]
N‘, A, A, Ay B, B, By 5;
Ay Ay

N | | 4
@)
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where the A;; , B; , and D;; are the stiffness coefficients arising from the piecewise integration
Equations of Motion:

Deleting the body couples, the reduced equations of motion become (for constant Lame parameters A and B):

av au
a, 1[ d\J,+AM¢:r+ 1[ M g 5"'}+ABP,= Pu,

Prals B
+A—t—
da = 6B R,| da 28 | R,| 2B ar?

aa av,
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o8 " da Ry, oa " ap |'R|"2p " oa a0
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AR 0 T A a A AB =—p—2=2 (8)
A R, +R¢ + ’]+B = +2A4B 2P + oF +AB(p,) >
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The above equations of equilibrium can be written in terms of displacements as

Ly, L, Ly||u| [-p 0 0]_, [u] [-~.

LH L_,J L_g, v, [+ 0 -p 0 87 Vo S8y (9
L, L, L,|w 0 0 p v, P

Consider a barrel shell that is made of cross-ply laminates, thus
Als=Ax=Bjs=Bx=Dis=Dy=0 (10)

Assuming the radius of twist to be infinite. (i.e. Roy= ). Consider an open barrel shell, with shear diaphragm (S2)
boundaries on all four edges. That is, the following boundary conditions apply:

Na=Wo=v,=M;=0 for the edges o =-a/2, +a/2 (11)
Ne=w,=u,=Mp=0 for the edges B =-b/2. +b/2

The following solution satisfies the boundary conditions and the equations of motion exactly:

M N M N
u(oBr)=y dU,sin(aa)cos(B,B)  vya.Bt)=Y Y V. cosia,)sin(P,B)

m=0 n=0 m=0 n=0 (12)
M N 2 2
w‘,(cx.ﬁ.r)=z ZW_, cos(a o )cos(B,B ) where a_z":n.ﬁ, =1£;£
m=0 n=0

VIBRATIONS OF BARREL SHELLS

Various curvature ratios in the longitudinal direction of the shell are treated including both negative and positive Gaussian
curvature. The curvature ratio (a/Ra) along the longitudinal axis varies from -0.5 to 0.5. The ratio +0.5 (with &/mRy = 0.5, and
m =1) yields a spherical shells that is “chopped” from bottom and top. When a/R, is taken as zero, a cvlindrical shell occurs. The
nondimensional frequency parameter g _ , RyJp E isused. The matenal properties for graphite/epoxy are:

Ey = 2002x10° psi, E; = 13 x 10° psi, Gp= 103 x 10° psi, viz = 0.3
0.25
—8— a/mRp=8.0
o —— .0
LT ISP S8 S, o gl [ i cicsany
o1+ v =% a/mRp=1.0
i ~#- aimRp=0 5§
et
- -'—
a %% g - i N
A___,_.-b'-""a
0.01 0.05 4 .__._a--"""* ._...--."
#.___._‘-I-"
0.00 -
T T L T T
i . ' y : <050 025 000 025 050
1 2 4 [ &Ra
amiy Curvature effects (a/Ra) on the fundamental Q for
Thickness effects on the fundamental Q for [0,90] closed graphitelepoxy barrel shells, Rwh=100,

[7.,20] graphitelepoxy clused barrel shells
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DYNAMIC BEHAVIOUR OF PRETWISTED COMPOSITE
PLATES - A FINITE ELEMENT ANALYSIS
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Kharagpur - 721 302, INDIA

INTRODUCTION

A cantilever pretwisted plate has significant applications in the turbomachinery, impeller and
fan blades. In a weight sensitive application such as aircraft engine turbomachinery, composite
materials are advantageous because of their low weight, high stiffness and strength. Structural
properties of laminated composites could be tailored to realise high performance by
controlling the lamination angle and stacking sequence of comprising layers. In realistic
situations, these twisted plate structures have geometrical complexities arising due to their
specific applications in various service environments. Certain dynamic parameters are also to
be considered when these structural elements are in rotation, and the finite element method
is an efficient tool to the designer for the dynamic anlaysis of such type of applications.

Chamis [1] tested HTS/K601 laminated composite [+40/+20/0] blades using holographic
technique and compared the test data with the theoretical results obtained using NASTRAN.
Qatu and Leissa [2] determined the natural frequencies and mode shapes of laminated cantilevered
plates with pretwist using the laminated shallow shell theory in conjunction with the Ritz method.
The effects of thickness ratio, pretwist and fibre angle on natural frequencies and mode shapes of
three layer, graphite/epoxy and E-glass/epoxy angle ply plates were studied. McGee and Chu [3]
carried out three - dimensional continuum vibration analysis for rotating, laminated composite
blades using the Ritz method. Full geometric nonlinearity and the Coriolis acceleration term were
included in the blade kinematics. Bhumbla and Kosmataka [4] developed the nonlinear finite element
techniques using six noded triangular element to study the static deflection and free vibration
behavior of spinning pretwisted composite plates.

The present investigation considers the combined effect of skew and precone angle
on the vibration characteristics of the three basic laminate configurations viz. bending
stiff: [0,/+30],, quasi-isotropic: [0/+45/90], and torsion stiff: [+45/F45],. The work involves the
development of a nine noded 3-D degenerated composite shell element which is used in the finite
element formulation for studying the dynamic behaviour of stationary and rotating laminated
composite pretwisted cantilever plates because of the fact that this element can model complex
geometrical plate behaviour accurately. While most of the studies available in the open literature
are for uniform plates and linear pretwist, the cantilever plates with exponentially varying
thickness and variable chordwise width have been considered in the present work and vibration
characteristics of laminated composite plates are investigated for nonlinear pretwist. A trigonometric
increment of pretwist angle along the plate length is considered and the cubic polynomial
approximation is assumed for pretwist angle along each elemental length. The effects of shear
deformation and rotary inertia are included. This work presents the concise study of the influence
on the natural frequencies of parametres such as fibre orientation, aspect ratio, thickness ratio, angle
of twist, skew and precone angle that is offset from the normal to the untwisted plate. The
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non-dimensional fundamental frequencies furnished are the first known results of the type of
analyses carried out here.

THEORETICAL BACKGROUND

The expression for thickness is assumed to be
h = hye™ (1)
The change of variable is obtained from

k h
v:=—1~~lf[—fzk(l-«r&)+2;}‘l BY, AU = (), @

where h, is the thickness of the k th layer.

The element elastic stiffness matrix is given by

g 1 L 4

h
(K1, =2 [ [ [[BY ([ D][B]det[ ] (ZF)dEdnd, 3)
B v 4 4 t
where n is the total number of layers in the laminate.

The differential equation of the rotating plate is of the form

[M]1{8})+([K]+[K1){8)=F(Q) 4)

where F(Q’) is the nodal equivalent centrifugal forces, and [K,] is the geometric stiffness matrix
due to rotation.

RESULTS AND DISCUSSION

The study on the free vibration characteristics of laminated composite non-linearly
pretwisted cantilever plates with exponentially varying thickness and variable chordwise
width is carried out and salient features are highlighted briefly. Non-linearity in angle of twist has
positive effect on the frequency parameters (non-dimensional fundamental frequency per unit
weight) apart from satisfying the functional requirement. For higher value of twist angle
pronounced design improvement could be obtained. Exponentially varying thickness coupled with
the variable chordwise width along spanwise direction leads to substantial increase in
fundamental frequency and thereby the geometric configuration is established optimally. Composite
plates with higher thickness ratio and lower thickness factor yield in general higher value of
non-dimensional fundamental frequencies.

The study is next carried out to investigate the effects of precone angle, skew angle,
pretwist, aspect ratio and thickness ratio on natural frequencies corresponding to three different
laminate configurations viz. bending stiff: [0,/+30], , quasi-isotropic: [0/+45/90], and torsion
stiff: [+45/F45],. The non-dimensional fundamental frequencies [@=wa’(p/Eh2)'"? | for
graphite/epoxy composite twisted rotating cantilevered plates corresponding to different aspect
ratios, thickness ratios and twist angles are obtained. In general, frequency values exhibit a
consistent trend with the increase of precone angle from 0° to 90° for all the laminates. It rises to
a maximum value and then drops down to a minimum value at 90°. The value at 8=90° is the
fundamental frequency at rest. But for the case of torsion stiff plate of aspect ratio unity and
quasi-isotropic laminate of a/b=3, b/h;=5 maximum value of non-dimensional frequency occurs
corresponding to 8=0 with y=45° and ¢=45°. Lower values of the non-dimensional fundamental
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frequencies are obtained due to the combined effect of precone angle and skew angle, for all the
laminates analysed corresponding to a particular value of plate thickness. For the twisted plate, it
is observed that higher value of skew angle has got pronounced effect on the bending stiff and
quasi-isotropic laminates. Corresponding to higher value of the skew angle there is always a decrease
in the frequency values with the increase of angle of twist for positive values of precone angle
excepting B=90°, for the bending stiff and quasi- isotropic laminates. For higher aspect ratio
bending stiff and quasi-isotropic laminates provide higher frequency values, but for torsion stiff
laminates this is valid only for positive values of precone angle excepting $=90°. The influence on
non-dimensional fundamental frequencies of thickness parameter (b/h,) is manifested in higher
value with decrease of plate thickness for bending stiff, quasi-isotropic and torsion stiff
configurations. The results obtained are the first known non-dimensional frequencies of the
different layups (bending stiff, quasi-isotropic and torsion stiff) considered and may serve as the
reference solution for future investigations.
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Inconsistencies between the Vectorial and the Variational
Formulation of Classical and Higher-order Shell Theories

Kostas P. Soldatos
Department of Theoretical Mechanics, University of Nottingham, Nottingham NG7 2RD, UK.

The well-known differential equations of motion (or cquilibrium) of a classical plate theory (Kirchhoff,
1850; Reissner and Stavsky, 1961) can be obtained, in terms of the conventional force and moment resultants,
by using either a variational approach (for instance, Hamilton's principle) or one of two alternative, equivalent,
vectorial approaches. The first of these later approaches deals with a geometrical representation of the
conventional force and moment resultants, acting on an element of the plate middle-plane, and a subsequent
consideration of their balance (Donnell, 1976). In the alternative vectorial approach, considerations dealing
with both the introduction and the balance of the conventional force and moment resultants are based on
appropriate integration of the equations of motion (or equilibrium) of three-dimensional linear elasticity
through the plate thickness. Using any of these approaches in connection with a classical plate theory that
mvolves three unknown displacement functions (degrees of freedom), one obtains, in exactly the same form,
three differential equations of motion (or equilibrium). Moreover, all three approaches are still equivalent in
dealing with the formulation of the corresponding differential equations of a so-called first-order or uniform
shear deformable plate theory (USDT) that involves five degrees of freedom (Reissner, 1945; Mindlin, 1951:
Yang et al, 1966). Hence, any of these approaches yields, in exactly the same form, five differential equations
that reflect the balance of conventional force and moment resultants.

This was found not to be the case for the class of the so-called parabolic shear deformable plate theories
thatsr.illmakeuseofﬁvedegrecsofﬁ'eedornandassumethatnmsverscshearminsarepambolim.lly
distributed through the plate thickness (Reissner, 1975; Levinson, 1980: Bhimaraddi and Stevens, 1984;
Reddy, 1984; Soldatos, 1988). For such a plate theory (PSDT), a discrepancy was observed between a
vectorial and a variational derivation of equations of motion (or equilibrium). In more detail, the conventional
vectorial approaches were based on the use of conventional force and moment resultants only. Contrary to this,
a variational approach necessitated the introduction of certain additional, higher-order force and moment
resultants, the physical meaning of which was not obvious. As a result, for the same or an equivalent
displacement approximation, the conventional vectorial approach led to differential equations of motion or
equilibrium that were considerably different from those obtained variationally.

A solution to that problem, caused by the discrepancy observed between the vectorial and variational
formulations a higher-order plate theory, was given by the new vectorial approach proposed recently (Soldatos,
1993; 1995). In any particular case that deals with a classical or a first-order plate theory, this new,
generalised, vectorial approach reduces into the corresponding conventional approach that is based on
appropriate integrations of the equations of motion (or equilibrium) of three-dimensional linear elasticity
through the plate thickness (Soldatos, 1993). Moreover, this new approach was found suitable for the vectorial
formulation of the governing differential equations of all variationally consistent plate theories available in the
literature, including the ones that further take transverse normal deformation effects into consideration
(Soldatos, 1995).

A corresponding problem, dealing with a "shell-type" variational inconsistency of the conventional vectorial

approach was recently addressed in (Soldatos, 1994). This was detected by performing conventional vectorial
formulation on the most commonly used first-approximation classical cylindrical shell theories of Love (1927),
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Sanders (1959) and Donnell (1933) and, subsequently, by comparing the outcome with the corresponding
variational result. The discrepancies observed led to the following conclusions: (i) as far as shell-type
structures are concerned, the afore-mentioned inconsistency is not connected with the formulation of higher-
order, transverse shear deformable theories only but it occurs even in cases dealing with the formulation of
classical shell theories; (ii) since classical shell theories are long known and widely used in the literature, this
inconsistency shell problem is much older than the corresponding plate problem discussed and resolved in
(Soldatos, 1993 1995); and (iii) in spite the existence of certain relevant vectorial formulations (Herrmann and
Mirsky, 1956; Mirsky and Herrmann, 1957), the problem becomes even more complicated with second- or
higher-approximation classical shell theories (Fliigge, 1960) or in cases that transverse shear deformation
effects are involved.

The purpose of this paper is (i) to re-address this "shell-type" variational inconsistency; and (i) to extend
the applicability of the new approach presented in (Soldatos, 1993; 1995) towards the vectorial formulation of
the vanationally consistent equations of motion (or equilibrium) of the afore-mentioned first-approximation
classical shell theories of Love (1927), Sanders (1959) (also known as best first-approximation theory) and
Donnell (1933) (also known as quasi-shallow shell theory). It is emphasised that, dealing with classical shell
theories only, this extension lacks the generality of the corresponding flat plate approach presented in
(Soldatos, 1993; 1995). It is hoped, however, that it will contribute towards a new constructive debate and.
perhaps, towards the solution of the inconsistency problem described in (Soldatos, 1994). For convenience, and
in a close connection with (Soldatos, 1994), the new formulation is presented for the relatively simple
geometric configuration of a circular cylindrical shell.

The success of the new vectorial approach (Soldatos, 1993; 1995), with regard to this "shell-type"
inconsistency problem, is based on the distinction of the independent actions of the middle-surface strains,
changes of curvatures and twist, through appropriate rearrangements of the well-known kinematic relations
employed in the afore-mentioned classical shell theories. It is further shown that the vectorial derivation
attempted is completely successful only within the limits of Love's kinematic approximations. This is due to the
fact that the strain-displacement relations employed in either a Donnell-type or a Sanders-type shell theory are
obtained in a rather artificial manner, upon suitably altering the corresponding Love-type relations. The Love-
type kinematic relations appear therefore to be the only strain-displacement relations that are obtained in a
consistent manner on the basis of the displacement approximations employed for the development of a first-
approximation classical shell theory.

REFERENCES

Bhimaraddi, A. and Stevens, L.K. (1984) A higher order theory for free vibration of orthotropic, homogeneous
and laminated rectangular plates. J. Appl. Mech. 51, 195-198.

Donnell, L. H. (1933) Stability of Thin-walled Tubes under Torsion. NACA Report 479.

Donnell, L.H. (1976) Beams, Plates and Shells. New York: McGraw-Hill,

Fligge, W. 1960 Stresses in Shells. Berlin: Springer.

Herrmann, G. and Mirsky, 1. (1956) Three-dimensional and shell-theory analysis of axially symmetric motions
of cylinders. J. Appl. Mech. 23, 563-568.

Kirchhoff ,G. (1850) Uber das Gleichgewicht und die Bewegung einer elastichen Scheibe. J. Reine Ang. Math.
40, 51-88.

Levinson, M. (1980) An accurate simple theory of the statics and dynamics of elastic plates. Mech. Res.
Comm. 7, 343-350.

Love, A.E.H. (1927) A Treatise on the Mathematical Theory of Elasticity. 4th edn., Cambridge University
Press.

79



Mindlin, R.D. (1951) Influence of rotatory inertia and shear on flexural vibrations of isotropic elastic plates. J.
Appl. Mech. 18, 31-38.

Mirsky, I. and Herrmann, G. (1957) Nonaxially symmetric motions of cylindrical shells. J. Ac. Soc. Am. 29,
1116-1123.

Reddy, J.N. (1984) A simple higher-order theory for laminated composite plates. J. Appl. Mech. 51, 745-752.

Reissner, E. (1945) The effect of transverse shear deformation on the bending of elastic plates. J. Appl. Mech.
12, A69-A77.

Reissner, E. (1975) On transverse bending of plates including the effect of transverse shear deformation. Int. J.
Solids Struct 11, 569-573.

Reissner, E. And Stavsky, Y. (1961) Bending and stretching of certain types of heterogeneous aeolotropic
elastic plates. J. Appl. Mech. 28, 402-408.

Sanders, J.L. (1959) An Improved First Approximation Theory for Thin Shells. NASA Report R-24.

Soldatos, K.P. (1988) On certain refined theories for plate bending. J. Appl. Mech. 55, 994-995.

Soldatos, K.P. (1993) Vectorial approach for the formulation of variationally consistent higher-order plate
theories. Comp. Engng 3, 3-17.

Soldatos, K.P. (1994) A question of consistency in the variational and vectorial formulation of dynamic shell
theories. J. Sound Vibr. 175, 711-714.

Soldatos, K.P. (1995) Generalisation of variationally consistent plate theories on the basis of a vectorial
formulation, J. Sound Vibr. 183, 819-839.

Yang, P.C., Norris, C. and Stavsky, Y. (1966) Elastic wave propagation in heterogeneous plates. Int. J. Solids
Struct. 2, 665-684.

80



Exact Solution for Vibrations of a Combined System Consisting
of Multiple Curved and Straight Bars

K. Suzuki
Professor, Faculty of Engineering
Yamagata University
Yonezawa, 992 Japan

INTRODUCTION

The study on vibrations of a combined system
consisting of multiple curved and straight bars is
of great importance in wide variety of technical
applications like earthquake proof design of piping
systems of chemical plants, thermal power plants
and atomic plants. There exist a number of
investigations dealing with the vibrations of curved
beams and their combined system (cf the
publication summarized in Chidamparam and
Leissa [1] ). Suzuki et al [2,3] presented an exact
solution procedure for solving free vibrations for
a combined system of plane curved bars and
straight bars.  They obtained the frequency
equations by minimizing the Lagrangian of the
combined system expressed in quadratic forms of
unknown boundary values. But the Lagrangian
approach has a fault that the order of determinant
becomes higher as the number of joints increases.

In this paper, an exact solution procedure
for solving the vibrations of the combined
system is presented by making use of the transfer
matrix method. The field and the point transfer
matrices are formulated by using the exact
solutions of each equation of motion for the
curved and straight bars. As numerical examples,
frequencies of U-bars are presented, and reliability
and availavility of the present method are
discussed.

ANALYSIS

0] (0] -

VIBRATION OF A PLANE CURVED BAR

Takahashi et al [4] obtained the equations of
motion for in—plane vibrations of a plane curved
bar by minimizing the Lagrangian of the system.
Let us derive here the equations of motion by
considering the equilibrium of the forces and the
moments acting on an element of a plane curved
bar.

Figure 1 denotes the directions of dis-

placements, forces and moments on an element of
a plane curved bar with the arc length ds
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and the central angle d6 . Letus denote the
displacement along tangent on the center line by

and that towards the center of curvature by v.
Then the bending moment M » , the shearing force

F. and the tangential force F : are expressed

from Love[5] as follows:

— %W d(m
M, = -EI —,"—+—(i]
s ds\p

-
= (1)
as

?,-EA(E—E)
a p

where EI, EA and 1/ o are the bending rigidity,
the longitudinal rigidity and the curvature of
centerline, respectively. Consider now the
equilibrium of the forces towards the center of
curvature and along tangent on the center
line and take the equilibrium of the moments
with respect to the point m (or n) on the element
in Fig.l. Assuming that sin(d6/2)=d6/2 ,
cos(d@/2) =1 and neglecting the small terms of
second order, one obtains

-:i"

%y

Fig.1 Directions of displacements, forces and
moments on an element
(In-plane vibration)
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where 0o, A and r are the density, the cross
-sectional area and the time, respectively.
Equations (2) correspond with those obtained by
Takahashi and others [4].

EIELD TRANSFER MATRIX OF A CURVED
BAR

For the harmonic vibration, one may assume
the solution to Egs. (2) as:

7 =u(s)sin(wt+ £)

7 = W(s)sin(wt+ ¢) (3)

where w is the circular frequency and £ is
an arbitrary phase angle.
The transformation of variable

de 1
-2 Gol) (4)

is now introduced, where x is a variable that
shows an angle between the tangent at the origin

of s and the one at any point on the center line,
G is a constant determined by the shape of the

curve and @ (x)is aquaction of 6 . The
exact solution to Egs.(2) can be obtained and the

general solutions are expressed in the form [4]

w=Ycul) v- Eqv.(x (s)

[

where C1-Cs are arbitrary constants and
| i) ,vie | i=1-s are six independent
solutions. By using Egs.(5), one obtains the field

transfer matrix T rn as follows:

FANE P e (6)

where T rn is a matrix of order (6 X 6) and Z
is a state vector, and

Z=luvv M, T, S, |

M, - —EIG’tb%(*DU)

T, = Efo’qr[(v /GE)W + @i (¢U)]

d ( d 2 AL
-— — | —(D L1
S, = -EIG® ( U)), v
VeGol, Uiy, Wy (7)
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Fig.2 Conditions of Continuity at a connecting
point () of curved and straight bars

POINT TRANSFER MATRIX
Figure 2 denotes the conditions of continuity

at a connecting point (z) of curved and straight
bars. Let us take the X and ¥ axesfora
straight bar as shown in Fig.2, and the Z axis
is taken . perpendicular to the X y plane and
positive downward. Denote the displacements and
the forces in the X andy directions by (u *, 9" )
and (T =, T'7 ), respectively and the rotation angle
and the bending moment about the Z axis by & =

and M . Then one has
dv® dit
8 - — - . — - —
dx’ Myl ax*t
b a
o -_mﬂ T. = (8)

& TR

The conditions of continuity at the point n are
given by the following expression:

[ u [—xuf rr cosy -sing 0 0o o o] [u]
v (-xo) -simp-cosy 0 0 0 O v*
g—"(—m) 0o o -1 0o o o]]esz
F-] =
M (=xo) 0 0 0 | 0 0 Mz
T#(-xo) 0 0 0 cosy-siny | Tx
S¢(xd], L O O 0 -sinp-cosy), | T3,
(9)
or
zr-1, 2" (10)

n r-

Matrix T~ is called a point transfer matrix.
From Eqs.(6) and (10), one finds

ziuIL = rhrpzuL (1 1 )



Table 1 Comparison among the frequencies a
by linear divisions and those by exact solution
( In-plane antisymmetric vibration of a semi

elliptic arc bar with clamped ends, # =02, v =
100 )
Mode|
Division Lst 20d 3rd
4 2.069 4.466 5.968
5 2.053 4.309 6.478
3 2 4.291 6.369
10 2.044 4.287 6.357
|[Exact_solution 2.035 4.278 6.345
8345 X=7/2 ¢=0 £=0.2 v=100

Present theory
S & W
Values by 8 lin

; d.ivm'“snsbyo[ t'.l]lm'rpm:.i.'r

Symmetric
Antisymmetric

0 0.5 1.0

Fig.3 Frequency curves for U-bars of
elliptic and straight bars

NUMERICAL EXAMPLES

Numerical studies are made for U-bars with
clamped ends consisting of elliptic arc bars and
straight bars.  All elliptic and curved bars are
taken to have equal cross-section and material
constant. To show the characteristics of the
vibration, the nondimensional frequency parameter

a , length ratio [o /I, ellipticity of curve
and slenderness ratio v are used:

a'=pAdw’l' JEI, = ‘Kaz +b1):’2

,u-(a'—bz)/(az+b’) (12)

where 22 and 2b are the major and the minor axes
of ellipse, / is the representative radius and lo
is the length of straight bar.

Table 1 shows the comparison among the
frequencies obtained by linear divisions and those
by the present method (exact solution) for in-
plane antisymmetric vibrations of a semi-elliptic
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a X=7/2 ¢$=0 1£=0.2 v=100

1.748 L

0.684 P~

0 1 ' 2 ' 3
I/

Fig4 Frequency curves for U-bars of
elliptic and straight bars

arc bar with clamped ends.

Figures 3 and 4 show the frequency curves
for in-plane vibrations of U-bars consisting of
elliptic and straight bars.
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Nonlinear Normal Modes in Vibration Theory?

Alexander F. Vakakis, Associate Professor
Department of Mechanical & Industrial Engineering
University of Illinois at Urbana - Champaign
1206 W. Green Street, Urbana, IL 61801

The title of this presentation might seem self-contradictory: Engineers and physicists
traditionally associate the concept of ‘normal mode’ with linear vibration theory and regard it as
closely related to the principle of linear superposition. Indeed, in classical linear theory the modes
of vibration of continuous system can be used to decouple the equations of motion, and to express
arbitrary free or forced oscillations as superpositions of modal responses. The linear modes are
computed by solving linear boundary value problems, and obey well-defined orthogonality
conditions. Moreover, any forced resonances of a system under external harmonic forces always
occur in neighborhoods of normal modes. It is a well known result that the principle of linear
superposition generally does not apply in nonlinear systems. Thus, it is obvious to pose the
following questions: Can the concept of ‘normal mode’ be generalized to nonlinear theory, and, if
it can, what is its utility since there is no nonlinear principle of superposition?

An obvious definition of a nonlinear normal mode (NNM) is an extension of the definition
of the normal mode of classical vibration theory. In that context, one defines a NNM of an
undamped discrete or continuous system as a synchronous periodic oscillation where all material
points of the system reach their extreme values or pass through zero simultaneously. Alternative
definitions of NNMs can be found in (Vakakis et al., 1996). It turns out that nonlinear systems can
possess more normal modes than their linearized counterparts. This is due to NNM bifurcations
which do not exist in linear theory, and which complicate the nonlinear dynamics. Hence,
extending linear concepts such as modal analysis to nonlinear systems must be performed with
care. In the following we discuss in detail two main applications of NNMs, namely, their influence
on forced resonances and nonlinear localization and motion confinement. Later we summarize new
potential areas of applications of NNMs to vibration analysis.

An important property of NNMs relates to forced resonances. In analogy to linear theory,
forced resonances in nonlinear systems occur in neighborhoods of NNMs (Vakakis et al., 1996).
Hence, knowledge of the structure of the normal modes of a nonlinear oscillator can provide
valuable insight on the structure of its resonances, a feature of considerable engineering
importance. Moreover, since the normal modes of a nonlinear continuous system may exceed in
number the modes of its linearized counterpart, certain nonlinear forced resonances may be
essentially nonlinear and have no analogs in linear theory; in such cases a ‘linearization’ of the
system either might not be possible, or might not provide all the possible resonances that can be
realized.

As an example, we consider the cyclic flexible assembly depicted in Figure 1, consisting of
N identical uniform cantilever beams, coupled by means of linear stiffnesses. Assuming beam
inextensionality and finite-amplitude oscillations, nonlinear inertia and curvature terms give rise to
geometric nonlinearities which, as shown, can affect significantly the dynamic response (King and
Vakakis, 1995). The governing equations of motion are of the following form:

S
1 (x
Vit + Vixxxx + €6iVie + €{ Vix[Vix Vixxlx + 5_[1 [ [vie2€n de]uds }x =
0

Pi(x,t)
gl '’

where K is the nonlinear coupling stiffness, c; is the coefficient of distributed viscous damping for

the i-th beam, 8(¢) is Dirac's function, Pj(x,t) is the distributed excitation applied to the i-th beam,

K14 .
=-€EF1 {2vi(VL) - vi-1 (VL) - vi+1 (VL) } 8(x-VL) + i=1,....N (1)
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and vg = VN, VN+1 = V] due to cyclicity. It is assumed that the coupling linear stiffnesses and the
viscous damping coefficients are small, O(g) quantities (with lel<<1), and that the beam deflections
are of O(g!/2). It is additionally assumed that the distributed excitations Pj(x,t) possess harmonic

time dependence of frequency (w; + €0) and identical spatial distribution to the first linearized
cantilever mode of each beam:

Pi(x,t) = ®(x) cos(w; +€o)t, O<x<l, 1=1,.,N (2)

In (2), ®(x) is the spatial distribution and ; the natural frequency of the first linearized cantilever

mode of each beam. We consider fundamental resonances, and approximate the steady state
responses of the beams as follows (King and Vakakis, 1995):

vi(x,t) = ®1(x) aj cos[(w+eo)t+B;i] + O(e), i=1,..,N (3)
In Figure 2 we depict the fundamental resonance branches of the system with N = 4 beams, and
harmonic excitation applied to only beam 1. The coupling stiffness is assigned a value which
guarantees the existence of additional NNMs with no counterparts in linear theory. The
complicated structure of the resonance curves is caused by NNM bifurcations taking place in the
unforced, undamped system, which increase in complexity as the number of beams increases. As
many as twelve stable co-existing fundamental resonances can be observed; linear theory would
predict the existence of, at most, four resonances.

One of the most interesting applications of NNMs in vibration analysis is nonlinear mode
localization. By this term we mean the property of a subclass of NNMs to be spatially confined,
i.e., to localize to certain areas of a structure. Considering the resonance plots of Figure 2 for the
cyclic assembly, we note that the branch 1 of fundamental resonances is strongly localized since it
corresponds to a response that is mainly confined to the directly forced beam 1. This strongly
localized solution occurs in the neighborhood of a localized NNM of the undamped unforced
system and has no counterpart in linear theory. There also exist weakly localized resonance
branches during which the forced beam and adjacent beams oscillate with comparable amplitudes,
whereas all other beams undergo much smaller vibrations (branches 7 and 8 in Fig.2). Hence, a
basic property of a subclass of NNMs is that they spatially confine vibrational energy, a feature
which can find application in vibration and shock isolation designs of mechanical oscillators. The
concept of NNM provides a valuable tool for understanding mode localization and motion
confinement in nonlinear vibrating systems. In that context, nonlinear mode localization is defined
as the spatial confinement of the vibrational energy of a subset of NNMs.

NNMs can find applications in additional areas of vibration theory, including modal
analysis and system identification (MA-SI), where traditional techniques for analyzing nonlinear
structures are based on the assumptions of weak nonlinearities and of a modal structure similar to
that of an underlying linearized system. As shown above, nonlinear systems can have complicated
resonances, and in performing nonlinear MA-SI one must consider the possibility that certain of
the sought modes are essentially nonlinear, with no counterparts in linear theory. In this context,
the concept of NNM can provide a valuable tool for understanding the effects of structural
nonlinearities on the dynamics, and for developing a new class of nonlinear MA-SI methodologies
that can be used for analyzing practical structures with essential nonlinearities such as, clearances
or dry friction.

Additionally, the NNM localization phenomenon can be implemented in novel active or
passive vibration isolation designs, where a disturbance generated by external forces is first
spatially confined to a predetermined part of a structure, and, then, passively/actively eliminated.
Inducing localized NNMs in a flexible structure enhances its controllability, since in designing for
active control one needs to consider only a small substructure (where the disturbance is confined)
instead of controlling the entire structure; of course, issues of control spill-over and excitation of
unwanted modes should also be addressed.
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Spatially Modulated Vibration Modes in
Rotationally Periodic Continuous Systems

M. Kim, J. Moon, and J. A. Wickert
Department of Mechanical Engineering
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Background

Structures that are nearly axisymmetric play important roles in diverse engineering applications,
including disk and drum brakes, computer disk drives, gas turbine assemblies, gyroscopes,
automotive tires, and power transmission. A rich literature describing the vibration of those particular
systems, and of axisymmetric or nearly-axisymmetric models of them, is available and dates at least to
early studies by Rayleigh addressing the acoustics of church bells.

To fix ideas, each vibration mode of a solid axisymmetric circular disk is classified (NC, ND)
according to the numbers of nodal circles and diameters. Defined by the condition ND = 0, the singlci
(or distinct) modes have eigenvalues that are isolated roots of a characteristic equation, and these
modes are independent of the angular coordinate. All doublet (or degenerate) modes with ND > 0, on
the other hand, occur in pairs with two-fold repeated natural frequencies. Each member of such a pair
has either sinusoidal S or cosinusoidal C angular dependence at wavenumber ND, and the mode shape
is void of all other harmonics.

Alternatively, if the disk deviates from axisymmetry in that one or more model features varies with
angular position, significant changes can occur to the frequency and mode structure, particularly so for
the doublets. Of technical interest are configurations in which N features are equally distributed
around the disk. While rotationally periodic features do affect the singlet modes, more notable changes
occur to the doublets. Frequency splitting has been investigated within the context of various physical
systems including bladed disk assemblies, cooling towers, circular rings, automotive tires, slotted
sawblades, domain asymmetry, and bolted connections. For some doublets, the natural frequencies
split into distinct values when the features are introduced, and criteria are available to predict which
modes retain repeated frequencies and which split. In short, when N is an even number, each doublet
having ND = m*N/2 for m = 1, 2, 3, ... splits, but when N is odd, the criterion becomes ND = m*N
instead. All other doublets persist with repeated frequency.

Mode Shape Modulation

In the light of these changes to the split doublets, the behavior of the repeated ones can appear at first
glance to be of secondary concern, or at the very least, less interesting. However, the repeated
doublets are susceptible to significant mode modulation which occurs through the superposition of the
shape’s harmonic at the base wavenumber ND with contaminant harmonics at certain wavenumbers k,
which are uniquely determined from ND and N.

In Fig. 1, collocated point transfer functions were measured with two fixtures—axisymmetric clamping,
and six evenly-spaced displacement constraints—up to 850 Hz. With six such stiffness features
present, doublet modes having one, two, four, or five nodal diameters retained repeated frequencies,
but as expected, the three and six nodal diameter doublets split in frequency into their sine and cosine
components. Figure 2 shows the measured section taken along a line of constant radius around the
disk for the mode that maps asymptotically to (0,4), and which has repeated frequency 335 Hz in Fig.
1. In this case, the maxima and minima are notably modulated, and the mode shape is no longer
described by a trigonometric function evaluated at a single wavenumber. When the shape is
represented by a classical Fourier expansion, harmonics in addition to the base wavenumber ND =4
become evident. This “four nodal diameter”” mode is noticeably contaminated by the second harmonic,
and to lesser degrees by the eighth and tenth.
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Modulation Criterion

Vibration of a nominally axisymmetric continuous structure is considered, in which its rotationally
periodic character is established through discrete stiffness features. The modulation criterion is
developed by perturbation of the structure’s eigenvalue problem, wherein the stiffness features are
treated as evenly-spaced perturbations to the stiffness operator. The analysis is conducted for both the
singlet and doublet modes, with emphasis being on the latter for which modulation is most acute. The
treatment of base modes with ND # 0 is classical, but it requires that the absolute phases of the
doublet’s members be chosen relative to the feature pattern such that as the perturbation parameter
grows, the eigenfunctions transition smoothly.

Singlet Modes. Each axisymmetric mode becomes distorted by other singlet modes, and by cosine-
oriented doublet members having nodal diameters equal to the number of stiffness features, twice it,
thrice it, and so forth. The family of sine-oriented modes, and all other cosine modes, do not
contaminate the singlets at the first level of approximation.

Doublet Modes. Either because of symmetry or normalization requirements, the base S and C
members do not contribute to their own, or to each other’s, first-order correction. That is, prospective
contamination occurs at k # ND. Recognizing that (i) the discrete features are equally-spaced with
certain symmetries relative to the sine and cosine mode components, (ii) the unperturbed mode shape is
harmonic at wavenumber ND, and (iii) the mode shape distortion is also harmonic but at different
wavenumbers, evaluation of the requisite inner products in the calculation lead to the following
guideline for predicting spatial modulation: If any of the equalities | ND £k | = N, 2N, 3N, ... is
satisfied, the harmonic S and C base modes will become contaminated by the doublet member having
wavenumber k and like symmetry. In Fig. 3, for instance, the “five nodal diameter mode” of the disk
with six constraints has modulation atk = 1 and 7.

Depending on the values taken by the natural frequencies, and the projections of the base modes onto
the stiffness operator, particular k will contaminate the base mode to a greater extent than others. Of
course, numerical values for the contamination coefficients can be calculated for a specified structural
model and feature distribution, but for the purposes of predicting and interpreting measured spatial
modulation, this criterion is useful to identify which distorting harmonics are expected to be present.

With N = 6, therefore, the criterion predicts that the doublet which is asymptotic to (0,4) in the
axisymmetric limit becomes contaminated by wavenumbers 2, 8, 10, ... Figure 4 graphically
represents the wavenumbers that contribute to each doublet’s distorted shape. For a specified number
of nodal diameters in the base mode, the wavenumbers depicted as shaded blocks contribute to the
perturbed modes as the features are gradually introduced to the structure. Such checkerboard diagrams
are constructed from diagonals of unity slope which emanate from points N, 2N, 3N, ... on both axes.
Also shown is the main diagonal which indicates the Fourier content of the base modes.

Conclusion

It is expected that spatial modulation has implications for the engineering of rotating machine
components. In some turbomachinery applications, structures are excited in vibration by a hydro- or
aerodynamic load that has spatial distribution established by the periodic geometry of stationary
components. The distribution of such loads can be spatially periodic with wavelength dependent on,
for instance, the number of stator vanes in a compressor stage. To the degree that the load’s
corresponding Fourier decomposition comprises multiple harmonics, it will have non-vanishing
projection onto any mode with one or more like wavenumbers. All other vibration modes remain
orthogonal and, in principle, quiescent in response. With a view towards identifying resonant

operating conditions, a spatially modulated mode can be driven by loads with Fourier content at ND,
as well as at other contaminating k.
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=1, and to a lesser degree atk = 7.
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Applications of an efficient free vibration root counting algorithm for
dynamic stiffness matrix methods

F W Williams
School of Engineering, University of Wales Cardiff, Cardiff CF2 3TB, U.K.

Because of the nature of this paper it considers only the author’s own use of the algorithm
of eqn (1), of which he was co-originator '2 and which counts J , the number of natural
frequencies below any trial frequency, without finding them.

J=]g+ s{K} (1

Here: K = dynamic stiffness matrix; s{K}= number of negative leading diagonal elements after
Gauss elimination has been applied to K; and J,= value J would have if all freedoms of D, the
displacement vector to which K corresponds (so KD=0 for free vibrations) were to be clamped.

The algonthm can be used to: converge iteratively on natural frequencies , ', to obtain
modal densities *, or to re-design to move inconveniently situated natural frequenmes A good
mode finding method able to separate coincident modes was also developed and reﬁned S

Multi-level substructurin% extensions and applications of the algorithm have been a
continuous thread of work " ®”. The algorithm has also been extended to : proper use of
symmetry °; : rotationally periodic structures and substructures ° , including stayed columns " to
problems for which Lagrangian multipliers are used 12.13. and to spinning structures '*

Applications have included plane frames " ' , optionally with Timoshenko effects '* '
taper '~ , elastic foundations '* and ﬂexural-torsmnal coupling = Listings have been
published > '*. This work has also been extended to space frames, for which the large program
BUNVIS-RG exists > %,

Prismatic assemblies of plates (e.g. aircraft wing panels) were included from the
beginning  * and optionally include laminated materials ® , through thickness shear
deformation®* and wave propagation * | The 50K line software VICONOPT has resulted *°

Faster solutions have been obtained by : improving the Gauss elimination < improving
the iterative convergence method used to choose the values of frequency at which J is
computed 28.29 . ysing linear *° or quadratic matrix pencils locally *' during convergence; and
using parallel computers %
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FREE VIBRATION OF SPINNING ANGLE-PLY LAMINATED
CIRCULAR CYLINDRICAL SHELLS

Gen YAMADA, Yukinori KOBAYASHI and Takashi YAMAGUCHI
Division of Mechanical Science, Hokkaido University, Sapporo, 060, Japan

INTRODUCTION

An analysis is presented for free vibrations of spinning angle-ply laminated circular cylindrical
shells having any combination of boundary conditions. The governing equations and the boundary
conditions of the shell are derived by applying Hamilton's principle to the strain and kinetic energies of
the shell in consideration of the second order terms of strains. The equations of motion are separated
into the quasi-static components and dynamic ones. The deformed state under the steady rotation
is determined numerically from the quasi-static equation, and the dynamic equations of the vibration
are solved by using the modified Galerkin's method. In numerical examples, the natural frequencies of
the spinning angle-ply circular cylindrical shells are calculated, and effects of lamination parameters
and boundary conditions on the free vibration are studied.

ANALYSIS

Figure 1 shows a circular cylindrical shell of the axial length L, thickness H and constant spinning
speed {2, and the radius from the center axis to the middle surface is denoted by R. The coordinates
(z, #, z) and the displacements u, v, w in the middle surface of the shell are taken as shown in the
figure.

The strain energy of the spinning shell is derived by considering nonlinear terms due to large
deformation, in the normal and shear strains. And the kinetic energy 7 of it is expressed as

T=§[L/;ph’ [(%)2+{%+(ﬂ+w)9}2+ (%—m)z] dfdz (1)

where p is the density of the shell.

The displacements can be written as the sum of the quasi-static components which are indepen-
dent of time and the dynamic ones. The quantities marked with ~ are the dimensionless quasi-static
variables and those with ~ are dimensionless dynamic ones.

%:E+ﬁ, %:1'.-, %=E+G (2)
. [
> .
A . : %
J Rj 0 }

L2 Lr |

Fig.1 Spinning cylindrical shell and its coordinate systems
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In this paper, the nondimensional displacements are approximated by the following functions
I
a(§) = Z X1u(8), B(€) = ZW X3:(8)

: I J .
9 t) == ZZU!J‘X]“ ) 1AL i { 0, t ZZV:'_-;XQ,-({)Y;(G)E"“ (3)
= i=1;=1
1

J — .
W(E,0,t) =S > Wi;Xai(€)Y;(0)e™

=1 j=1
where

i-1( SR 1 . - cosnd (j=1)
Xmil6) = €1+ Pm(1- &P, V;(0) = {sima . )

and n is the circumferential wave number. The quantities U;, W,, E",-J-, f;ij, ﬁ-"-j are unknown
coefficients. And the exponents &y, B in the admissible functions Xp,i(§) are boundary indicies
introduced such that the displacement functions (3) automatically satisfy given boundary conditions.
For the simplicity of the analysis, the following parameters are also introduced.

- 2 H2 2, 2
f= s n=%, (1, Y=t n, wy, ar=PEE g pRC

(L/2) kR E, 1T B

Here, w is the angular frequency of the system.

(5)

By substituting Egs.(3) into the strain energy equation and Eq.(1), and applying Hamilton’s prin-
ciple to the Lagrange functional L, the governing equations and boundary conditions of the spinning
shell are derived. The equations of motion and the boundary conditions for the steady state spinning
shell are obtained by neglecting all the dynamic components, and those for the free vibration of the
shell are also introduced by neglecting only the quasi-static components. Here, only the first order
terms of strain are considerd. By applying the modified Galerkin's method to the equations of motion
for quasi-static state, simultaneous equations are obtained for detemining the quasi-static state. The
quasi-static displacements T , W are determined by solving these equations.

The equations of free vibration of shells are also derived by using the similar procedure.

— 8%t  ON, u — ONo
A ' ON o5 hA2E = 0 6
Nege+ e * Nogg * 568+ a8 T ©)
82t — [8%*F ow _ ONg %0 o
AT el S N
Nzga N"(ae?“ae U+ 55 2N | 5eag t B

onN, OMy OM. o
xf ] xf
ot T o0 T o

— B _ . 7 == . 2.7 5_?
N,a?—Ng+Ng(62—u—2@—tﬁ)+2Nﬁ(a—u—-l)

+h (,\217 — 20" it + Q‘QF) =0

2 96> “ o0 o0 B¢ ®)
5 g+ +2 3650 +h(/\w+2ﬂ.1\w+9 u}—O

Here, the derivatives of force and moment resultants Nz Ng, Ngg.Mz,Mg, My are neglected due
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to the small quantities. The products of the quasi-static terms, which are the second order terms of
strains, and the dynaminc terms are also neglected.

By applying the modified Galerkin's method to the equations of motion (6)~(8) for the free
vibration of the shell and the boundary conditions, the frequency equation can be derived. And the
natural frequencies of spinning angle-ply laminated circular cylindrical shells are determined by solving
the frequency equation.

NUMERICAL RESULTS AND DISCUSSIONS

By using the scheme described before, a numerical calculation is carried out for angle-ply lam-
inated circular cylindrical shells having small thickness ratio (h=0.02). A graphite/epoxy, which
is a highly orthotropic fiber-reinforced material, is selected, the material properties used here are
Ey =138GPa, E; =8.96GPa, Gj2 =7.10GPa, 115 =0.3 (subscript 1 denotes the major material-
symmetry direction, subscript 2 denotes the in-plane transverse direction). The layer sequence is
described, for example, as ( @, - « ) from inner to outer lamina of the shell.

Table 1 shows the convergence characteristics of eigenvalues of vibration A of the simply-
supported, double layered (45°/ — 45°) circular cylindrical shell. The letters (f) and (b) correspond
to forward and backward waves, respectively. As shown in Table 1, the parameters converge within
4 significant digits by taking /=12 terms, therefore the following calculations are made by using 12
terms.

Figure 2 presents the eigenvalues of vibration A versus the dimensionless spinning angular
velocity (2 for a simply-supported, double layered shell (45°/ — 45%). The eigencurves show the
lowest eigenvalues of each circumferential wave number n (attached to curves) for the backward and
forward waves by solid and dotted lines, respectively. The eigenvalues of vibration for the backward
wave increase with an increase of the spinning velocity of the shell.

1.8 T T T
Table 1 Convergence characteristics of N
frequency parameters of a simply-supported, P 5
angle-ply laminated cylindrical shell 5- ’ orward ‘
(45 ) —482) . k=2, h=002 ,'n=2 & - Sasliceiid s_..;s_
0 I 2
8 10 12 13 kS
0.0 0.8693 0.8691 0.8690 0.8690 g
0.1 (f) 0.7948 0.7945 0.7945 0.7945 S
0.1 (b) 0.9581 0.9578 0.9578 0.9578 s
0.2 (f) 0.7342 0.7339 0.7339 0.7339 7]
0.2 (b) 1.061 1.061 1.061 1.061

(f) : forward (b) : backward B o1 0.2

Spinning velocity, 2+

Fig.2 Eigenvalues of vibration for a spinning shell

simply-supported at both ends,
(457/-45"), h=0.02, 1=2.0
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STABILITY OF FLUTTERED BEAMS SUBJECTED TO
CIRCULATORY RANDOM FORCES

By
T. H. Young, Professor
and
C. C. Jen, Graduate Student
Department of Mechanical Engineering
National Taiwan Institute of Technology
Taipei, Taiwan, R.O.C.

1. INTRODUCTION

Engineering structures are often subjected to circulatory forces.  Such forces
may be generated by air flows, jet propulsion and thermal stresses, etc.. Numerous
research works deal with this kind of problems [1—4]. When the magnitude of the
static circulatory force is below a certain value, all the natural frequencies of the
-structure remain positive and distinct, and the system is stable. As the magnitude
of the force reaches a critical value, one of the natural frequencies drops to zero or
two of the natural frequencies close up and coalesce, and the system becomes
unstable at this instant. The former is said to be buckling instability, while the
latter is said to be flutter instability.

When a structure subjected to static circulatory forces is fluttered, additional
force perturbation may stabilize the structure. Fu and Nemat—Nasser [5] first found
that a beam subjected to critical follower and harmonic forces may remain stable.
Recently Young and Chen [6] also showed that a panel subjected to super— critical
aerodynamic and in—plane harmonic forces can be stable in certain situations.
Therefore, this work will study the stability of a fluttered beam subjected to a
follower random force. The force is assumed as a zero—mean, low—intensity white
noise.

2. THEORETICAL ANALYSIS

A cantilever beam of length 1 is subjected to a follower static and random
force, as shown in Figure 1. The random f{force Pl(t) is assumed as a zero—mean,

low—intensity Gaussian white noise. By the classical beam theory, the equation of
motion and the corresponding boundary conditions can be derived. To satisfy all the
geometric boundary conditions, the displacement w is assumed as
1
wlx, t)= 35 _; a0 (1)
where q ~are generalized coordinates in time t. By applying the extended Galerkin

‘method and carrying out the integrations exactly yields a set of ordinary differential
equations in time, This set of equations can be rewritten into a set of the

first—order differential equations as

Mx + Kx = —P,(0)[F; % (2)
* * C F
where M |= [[M] [0]}, K |= [ (e} (K] + PO[ 0]) )
(0] [1] {11 (0]
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q
1 3 and x= ,

in which [I] is an identity matrix, [M], [C] and [K] are the mass, damping and
stiffness matrices, respectively, and [F] is the force matrix, which is asymmetirc
because the static force Po 1s nonconservative.

.y [101 [F,]
0] [0

' Assume that, without the random excitation, this is a circulatory system, that
is, the system will first yield to flutter instability as the static follower force reaches
a critical value P " It is observed that at the onset of fluttering, i.e., P0= Pcr’

one of the damping ratios is equal to zero, and this mode is refered to as the
critical mode. Therefore, introduce a linear transform

[g]= b, €, -y by, cylu (3)
where u is a 2Nx1 column matrix, and b and ¢, are the real and imaginary parts
of the right eigenvectors x . respectively.  Substituting equation (3) into equation
(2), using the critical configuration as the reference, premultiplying the matrix
[dl, e - dy, eN]T, where d_ and e, are the real and imaginary parts of the left
eigenvectors ¥, respectively, and utilizing the biorthogonality of the right and left

eigenvectors yields a set of pairwisely uncoupled equations. The solutions of this set
of equations are assumed as
—( w_t - v t
nn n-n ..
Uy 1= 2 cos(wnt + ¢), Uy, = —a e sin(u t + )
n= 1, 2, .., N (4)
If the damping rations ( o and the load ratio 7= _(P0~ Pcr)/P cr 2re small, and if

the random excitation P, (t)/P_ is a white noise of intensity K, the stochastic
avergaing procedure' may be used, and (al, ¢1) can be uniformly approximated in the

weakly sense by a Markov difusion process. The Lyapunov exponent of the critical
mode defined as

_ lim 1 '

A= Taw Tlnal, (5)
which can be obtained from the Ito equation for 3. If the Liapunov exponent is
negative, the critical mode is always bounded. Therefore, the criterion for the

asymptotic sample stability of the system is that this Liapunov exponent is negative.
3. NUMERICAL EXAMPLE

The asymptotic sample stability boundary of a fluttered cantilever beam
subjected to a follower random force are illustrated in Figure 2. The figure shows
that with the presence of the random follower excitation, the beam may remain
stable even when the static follower force has exceeded its critical value. Moreover,
the effect of the viscous damping makes the stability boundary to shift to the right
and makes it steeper.

4. CONCLUDING REMARKS

An analysis of the stability of fluttered beams subjected to follower random
forces has been presented in this work. The random force is characterized as a
small-intensity white noise. Numerical results show that due to this random follower
excitation, the beam may remain stable even if the static follower force has exceeded
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Figure 2. Asymptotic sample stability boundary of a fluttered cantilever

beam

subjected to a follower random excitation.
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Transition Point Solutions For Thin Shell Vibration

R.J. Zhang

(Department of Engineering Mechanics, Tongji University, Shanghai 200092, China)

On the vibrational shell of revolution, there is transition point when
the frequency locates in a special interval. Through the transition point, a
circumference divides the shell into three parts: the vicinity of the
transition circumference and both sides far from the circumference.
Different behaviors of any displacement mode of free vibration in the
three parts make it difficult to find a uniform expression, valid in whole
shell, for the mode. Many investigators devote themselves to the finding.
In 1966, Ross obtained matching asymptotic solutions in the simple case
of the axisymmetric vibration. In 1979, Gol'denvizer et al. published a
monograph in Russian. From the monograph we can see that the authors
obtained uniformly valid expressions for all the solutions except a
singular membrane one. The complicated nature of shell vibration with
transition point was discussed by Steele in 1976.

In 1991 the author presented all eight asymptotic solutions for the
non-axisymmetric vibration and all six ones for the axisymmetric
vibration. They are uniformly valid in the whole shell and satisfy the
accuracy of the theory of thin shells. The achievement of the complete
success depends on three families of comparison function, z;, (h=1,2,3,4),
R and J being defined, in terms of which the singular membrane ' solution
and four bending solutions can be expanded, respectively.

REFERENCES

Zhang, R.J. and Zhang, W., Tuming Point Solutions For Thin Shell
Vibrations, Int. J. Solids & Structures, Vol 27, No.10 (1991) 1311-1326

99



Homogenization Model of Beam Bundle in Fluid

R.J. Zhang

(Department of Engineering Mechanics, Tongji University, Shanghai 200092, China)

So called beam bundle is composed of a great number of (tubular) beams with
periodic structure, which are immersed in an acoustic fluid. It is important to evaluate its
natural frequency, added fluid mass and equivalent sound speed.

In the present paper the beam bundle is regarded as a fibber-reinforced composite
materials: beam is like reinforced fibber and fluid matrix, and then uses the asymptotic
homogenization method to develop a simple and enough rigorous mathematical model.
The model consists of the following three equations:

W(iﬂ 1;2’:};5- V“(Advﬁp)-

cy 1

X VU0 + PV o (Bogivy) =0

M gV + BV gp+ V,V,(EIV;V3%,)=0. ()

where the pressure of fluid p and the transversal displacement of beam w, are three
unknown functions to be determined. |X
fluid in the cell; A=
density of fluid; ¢, and ¢, are the respective sound speed in fluid and beam; EI is the
flexural rigidity of the beam; Greek subscripts assume the value 1 and 2 and

is the arca of the unit cell; |X,| is the area of

X ,|/|x| is the porosity of the beam bundle; 5 is the mean

A= X185~ Dop 3)
Bﬂ'ﬂ = A’: §¢+Daﬁ, (4)
Moy =5 50+ B/Dus ®

where &, is the Knonecker delta; Lx | is the cross sectional area of beam: 7, is the
mean density of beam and D,_, can be expressed in terms of the local function z, as

follows:
X1

P =]

Ir, Zpa® - ©)

7 ., satisfies the following local problem
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(Zapp=0
v4 a.ﬁnﬂ =n,
\X« Is periodic function of local coordinates v (7

1
m,f,} o =0

As can be seen from definition of A/, in (5) that the significance of P D,z isan
added fluid mass per unit length of beam. Hence, D, indicates the cross sectional area
of the fluid attached on the beam. Then we can see from (4) that B, denotes the

effective cross sectional area of the beam, which is the total cross sectional area of the
beam and the added fluid. Moreover, (3) indicates that 4 s €Xpresses the area of fluid in

the unit cell which is not added on the beam.

It is interesting to indicate the fact that the earlier results, given by Schumann and
Benner in 1981 and Brochard and Hammami in 1991, respectively, are the 2-D
application of the present 3-D theory.

In the one-dimensional case the natural frequency of the beam bundle can be easily
formulated as follows:

ma:th—l, (8)

where @, and @, are circular frequencies in air and in fluid, respectively; x = p_/p ,

is the density ratio of beam to fluid. In (8) we have used the asymptotic expression of
D,, as follows:

CA1-2)
¥ 2-2

|X16 4 for 1-A<<1 9)
A set of experimental data provided by H.-J. Wehling et al. is

A=0552, x=1067, and —<=1.124. (10)
w
I

Substituting the first two into the expression (8) we obtain the approximate theoretical
value of the frequency:

P 4116 (11)
oy

This value differs from the experimental result by onty 0.7%.
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